1. (10 pts) True or False? Score = max{0, right - \frac{1}{2} wrong}. No explanations are needed.

 (a) Relation \(R = \{(1,1), (1,2)\} \) (over the set \{1,2\}) is an antisymmetric relation.
 (b) A partial order relation is a relation which is reflexive, asymmetric and transitive.
 (c) If a poset has a least element, then the element is unique.
 (d) If \((S, R)\) is a poset, then \((S, R^{-1})\) is also a poset. (Here \(R^{-1}\) denotes the inverse of \(R\).)
 (e) There is a simple graph with 4 vertices each having degrees 2, 2, 3, 3.
 (f) Both \(K_9\) and \(K_{10}\) have an Euler cycle.
 (g) Graph \(K_{5,4}\) has 20 edges.
 (h) Let \(G\) be a simple graph with 5 vertices and 9 edges. Then \(G\) is always planar.
 (i) Every loop-free connected planar graph has a vertex \(v\) with degree\((v) < 6\).
 (j) Let \(R\) be the relation on the set of all ordered pairs of positive integers such that \((a, b)R(c, d)\) if and only if \(ad = bc\). The \(R\) is an equivalence relation.

2. (10 pts) Define Ramsey\((g, y)\) to be the smallest number \(n\) such that any green/yellow coloring of the edges of an \(n\)-clique will contain a green \(g\)-clique or a yellow \(y\)-clique, where \(g, y\) are natural numbers. Use an example to show that \(Ramsey(3, 3) > 5\). That is, construct a graph with two colors (green and yellow) such that the graph neither has a green 3-clique nor has a yellow 3-clique.

3. (15 pts) If \(A = \{1, 2, 3, 4\}\) and \(R = \{(1, 2), (1, 3), (2, 4), (3, 2)\}\) be a binary relation over \(A\). Answer the following questions. No explanations are needed. (Recall that \(R^2 = R \circ R\).)

 (a) \(R^2 = ?\)
 (b) \(R^3 = ?\)
 (c) \(R^4 = ?\)
 (d) What is the symmetric closure of \(R\)?
 (e) What is the transitive closure of \(R\)?

4. (10 pts) Let \(A = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}\), and define relation \(R\) on \(A\) by \((x_1, y_1)R(x_2, y_2)\) if \(x_1 + y_1 = x_2 + y_2\).

 (a) Prove that \(R\) is an equivalence relation.
 (b) Determine the equivalence classes \([1, 3]\) and \([1, 1]\) (i.e., for each of the two equivalence classes, list all of its elements).
5. (10 pts) Solve the following recurrence relation exactly. Show your derivation in detail.

\[a_{n+2} - 4a_{n+1} + 3a_n = -200, \quad n \geq 0, \]
\[a_0 = 3000, \quad a_1 = 3300. \]

6. (15 pts) Consider the following graph \(G \)

(a) (10 pts) Compute the the chromatic polynomial \(P(G, \lambda) \). Show your derivation in detail.

(b) (5 pts) Find the chromatic number \(\chi(G) \).

7. (10 pts) Prove (in a rigorous way) that the following graph does not have a Hamilton circuit.

8. (20 pts) Answer the following questions:

(a) Construct a graph \(G_1 \) which has a Hamilton circuit but not a Euler circuit
(b) Construct a graph \(G_2 \) which has a Euler circuit but not a Hamilton circuit
(c) Construct a graph \(G_3 \) which has both a Hamilton circuit and a Euler circuit
(d) Construct a graph \(G_4 \) which is not planar but has a Hamilton circuit.
(e) Construct a graph \(G_5 \) which is homeomorphic (but not isomorphic) to \(K_{3,3} \).