Define: $X = [x_1, x_2, \ldots, x_n]'$ where X denotes transpose.
Theorem \[
\beta(\mathbf{A}) = \beta \left(\bigcap_{\mathbf{X}} \mathbf{A} \right)
\]

\[
\mathbf{A} \in \bigcap_{\mathbf{X}} \mathbf{A} \quad \iff \quad \mathbf{X} \subseteq \mathbf{A},
\]

where \(\mathbf{X} \in \mathbf{I} \) and \(\mathbf{I} \in \mathbf{I} \).
Defn 5.3: Multivariate Joint LDP

The joint LDP of a continuous $X_1, X_2, ...$, is defined by

$$LDP \left(\left(x_1, x_2, ... \right) \right) = \left(\left(f_1(x), f_2(x), ... \right) \right) \qquad \left(f_1, f_2, ... \right)$$

provided that $f_1, f_2, ...$ are differentiable.
\[f(y) = \frac{1}{2} \left(2 - \frac{y}{5} \right) \text{ for } 0 \leq y \leq 5 \]

Sim. 0.8%.

Therefore,

\[f(y) = \frac{1}{2} \text{ for } 0 \leq y \leq 5 \]

and

\[\int_0^5 f(y) dy = \frac{1}{2} \left(2 \cdot 5 \right) = 5 \]

Therefore, we have

\[0 \leq \frac{1}{2} \left(2 - \frac{y}{5} \right) \leq 1 \text{ for } 0 \leq y \leq 5 \]
Thus, \(\frac{f^1(u, \xi)}{\nu^1} = \frac{f^2(u, \xi)}{\nu^2} = \frac{f^3(u, \xi)}{\nu^3} \). This means that \(X \) is independent of \(\nu \).
\[f(m) = \frac{d}{d\ln m} \left(\frac{1}{1 - F(x)} \right) \]

\[F(m) = 1 - \frac{1}{\int_{m}^{\infty} (1 - F(x)) \, dx} \]

\[= \int_{m}^{\infty} \frac{1}{x} \, dx \]

\[= \left[\frac{\ln x}{x} \right]_{m}^{\infty} = \ln m \]

\[M = \min \{ x_1, x_2, \ldots, x_n \} \]
This is a calculus problem involving the function $f(x)$. We are given the function $f(x) = \frac{x}{1 + x^2}$, and we need to find its derivative $f'(x)$. To do this, we use the quotient rule:

$$f'(x) = \frac{(1)(x) - (x^2)(1)}{(1 + x^2)^2} = \frac{1 - x^2}{(1 + x^2)^2}.$$
Thus the value $\int_{a}^{b} f(x) \, dx = \frac{b - a}{2}$.

\[\left\{ x \in \mathbb{R} \mid x \leq x_0 + dx \right\} \cup \left\{ y \in \mathbb{R} \mid y \leq y_0 + dy \right\} \]

$\exp dx \quad \exp \quad \exp dx$

\[\left[x_0, x_0 + dx \right] \]

\[\left(x_0^2 - dx \right) \left(x_0^2 + dx \right) \]

$f(x) \, dx = \frac{b - a}{2}$ is the probability density.
\[
\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} = 0
\]

\[
\exp \left[\int \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \right] + \exp \left[\int \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} \right] = \exp \left[\int \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \right]
\]

\[
\left\{ x \in \mathbb{R}^3 \mid \frac{\partial f}{\partial x} = 0 \right\} + \left\{ y \in \mathbb{R}^3 \mid \frac{\partial f}{\partial y} = 0 \right\} = \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{\partial f}{\partial x} = 0 \right\}
\]
be jointly Gaussian.

Thus \(\mathbf{X} = \mathbf{x} \) is a multivariate Gaussian:

\[
\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}).
\]

Note that any \(\mathbf{X}_i \) for any \(i \geq 5 \) is Gaussian, or jointly normal, if any of the Gaussian are jointly normal.

\[
\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n) \text{ are called jointly Gaussian.}
\]
3. Their generators are nonnegative.

\[\langle \bar{x} \rangle = \mathbb{R}^n \]

4. For any \(\bar{x} \) and \(\bar{x} \) in \(\mathbb{R}^n \),

\[\bar{x} \in \mathbb{R}^n \text{ if and only if } \bar{x} \in \mathbb{R}^n \]

They are nonnegative definitely.
\[\begin{bmatrix} \Gamma \end{bmatrix} \begin{bmatrix} \delta \end{bmatrix} = 0 \]

\[A \begin{bmatrix} \epsilon \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} \]

Consider an \(n \times n \) square matrix \(A \) (e.g., singular value decomposition).

\(A \) is a \(n \times n \) matrix.

Find the eigenvectors \(\lambda_i \) of \(A \), i.e.,

\[A \begin{bmatrix} x \end{bmatrix} = \lambda \begin{bmatrix} x \end{bmatrix} \]

where \(\lambda \) are the eigenvalues.
Let \(A = \mathbb{C} \times D \), where \(A = \mathbb{C} \).

If \(D \) is a disk, then \(\frac{1}{n} \to \infty \) as \(n \to \infty \).

Since \(A \) is symmetric, \(x = 0, y = 0 \) is the center.

Thus, \(E \) contains all nonzero column vectors.

Since \(E \subset \mathbb{C} \), \(E = I \cdot \mathbb{C} \).

Thus \(A = E \subset D \).

If \(A \) can be decomposed as