* Receiver Operating Characteristic (ROC)

- The performance of an LRT can be completely characterized by the probability pair \((P_F, P_D)\).

The figure is commonly known as the ROC for the test.

Ex. (from Ex *)

\[
\ell(r) = \frac{1}{\sqrt{N\sigma}} \sum_{i=1}^{N} r_{i} \begin{cases} < \sqrt{N\eta/m} & \text{if } H_{i} \leq H_{0} \\ > \sqrt{N\eta/m} & \text{if } H_{i} > H_{0} \end{cases}
\]

Since \(\ell(r(\mu))\) is Gaussian with \(E\{\ell(r(\mu))|H_{0}\} = 0\), \(E\{\ell(r(\mu))|H_{1}\} = \frac{\sqrt{N\eta/m}}{\sigma}\),

\[
Var\{\ell(r(\mu))|H_{0}\} = 1, \quad \text{and} \quad Var\{\ell(r(\mu))|H_{1}\} = 1
\]

\[
P_F = \int_{\frac{\ln\eta}{d} + \frac{d}{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = Q\left(\frac{\ln\eta}{d} + \frac{d}{2}\right)
\]

\[
P_D = \int_{\frac{\ln\eta}{d} - \frac{d}{2}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-d)^2}{2}} dx = Q\left(\frac{\ln\eta}{d} - \frac{d}{2}\right)
\]

where \(d = \frac{\sqrt{N\eta/m}}{\sigma} = E\{\ell(r(\mu))|H_{1}\} - E\{\ell(r(\mu))|H_{0}\}\),

and \(Q(x)\) is the Gaussian tail integral \(Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy\).
Note that \(P_D = Q(Q^{-1}(P_F) - d) \) with \(Q^{-1} \) being the inverse of \(Q \).

- Bounds on \(Q(x) \)

\(Q(x) \) is a frequently-used function in digital communications. It is well-tabulated. For analytical convenience, it is useful to discuss its bounds, as follow:

\[
\frac{1}{\sqrt{2\pi}x}(1 - \frac{1}{x^2})e^{-\frac{x^2}{2}} < Q(x) < \frac{1}{\sqrt{2\pi}x} e^{-\frac{x^2}{2}}, \quad x > 0
\]

- Defn: An LRT with \(\Lambda(r(\mu)) \) being a continuous random variable is called a continuous LRT.

- Properties of ROC:

1. All continuous LRT’s have ROC’s that are concave downward.
2. All continuous LRT’s have ROC’s that are equal to or above the line $P_D = P_F$.

3. The slope of a curve in an ROC at a particular point is equal to the value of η to achieve the (P_D, P_F) of that point.

pf:

$$P_D = \int_{\eta}^{\infty} f(\Lambda \mid H_1)d\Lambda \quad\quad P_F = \int_{\eta}^{\infty} f(\Lambda \mid H_0)d\Lambda$$

a. Now,

$$\frac{dP_D}{dP_F} = \frac{dP_D / d\eta}{dP_F / d\eta} = -\frac{f(\Lambda = \eta \mid H_1)}{f(\Lambda = \eta \mid H_0)}$$

b. Next, defining $\Omega(r) = \{r \mid \Lambda(r) > \eta\} = \{r \mid \frac{f(r \mid H_1)}{f(r \mid H_0)} > \eta\}$

we have $P_D(\eta) = \Pr\{\Lambda(\mu) > \eta \mid H_1\}$

$$= \int_{\Omega(r)} f(r \mid H_1)dr$$

$$= \int_{\Omega(r)} \Lambda(x) f(r \mid H_0)dr$$

By use of the transformation $X(\mu) = \Lambda(\mu) \quad (f(X \mid H_0)dX = f(r \mid H_0)dr)$,

we have $P_D(\eta) = \int_{\eta}^{\infty} X f(X \mid H_0)dX$

$$\Rightarrow \frac{dP_D(\eta)}{d\eta} = -\eta f(\Lambda = \eta \mid H_0) = -\eta f(\Lambda = \eta \mid H_0)$$

c. Finally,

$$\frac{dP_D}{dP_F} = \frac{dP_D / d\eta}{dP_F / d\eta} = -\frac{f(\Lambda = \eta \mid H_0)}{f(\Lambda = \eta \mid H_0)} = \eta$$

Q.E.D.
§M-ary Decision

Consider

* Bayes Criterion

- Defns: 1. \(c_{ij} \equiv \text{the cost that } H_j \text{ is sent and } H_i \text{ is detected.} \)

 2. \(c \equiv \text{average cost} \)

\[
= \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \Pr\{H_j \text{ is sent and } H_i \text{ is detected}\} c_{ij}
\]

\[
= \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} P(H_j) c_{ij} \int_{D_i} f(r \mid H_j) dr
\]

Since \(D = \bigcup_{k=0}^{M-1} D_k \) and \(D_k \)'s are disjoint,

\[
- c = \sum_{i,j=0}^{M-1} P(H_j) c_{ij} \int_{D_i} f(r \mid H_j) dr + \sum_{j=0}^{M-1} P(H_j) c_{ij} \int_{D_j} f(r \mid H_j) dr
\]

\[
= \sum_{i,j=0}^{M-1} P(H_j) (c_{ij} - c_{jj}) \int_{D_i} f(r \mid H_j) dr + \sum_{j=0}^{M-1} P(H_j) c_{jj}
\]

\[
= \sum_{j=0}^{M-1} P(H_j) c_{jj} + \sum_{i=0}^{M-1} \int_{D_i} \sum_{j=0}^{M-1} P(H_j) (c_{ij} - c_{jj}) f(r \mid H_j) dr
\]

- \(c \) is minimized if we choose \(D_i \) whenever
\[I_i(r) = \sum_{j=0}^{M-1} P(H_j)(c_{ij} - c_{jj})f(r \mid H_j) \]

is minimum among all \(M \) possible values. This decision rule is stated as

\[
\text{Determine } H_i \text{ if } I_i(r) = \min_k I_k(r) \quad \text{...........(*)}
\]

- Define \(\Lambda_i(r) = \frac{f(r \mid H_i)}{f(r \mid H_0)} \), \(i = 0, 1, ..., M - 1 \)

It follows from (*) that the LRT for this \(M \)-ary decision is:

\[
\text{determine } H_i \text{ if } \sum_{j=0}^{M-1} P(H_j)(c_{ij} - c_{jj})\Lambda_j(r) = \min_k \sum_{j=0}^{M-1} P(H_j)(c_{ij} - c_{jj})\Lambda_j(r) \quad \text{...........(+)}
\]

where we let \(\Lambda_0(r) = 1 \) by default.

Notes:

1. (+) says that \(\Lambda_1(r), ..., \Lambda_{M-1}(r) \) are sufficient for this \(M \)-ary decision problem.

![Diagram](image)

This implies that “at most \((M-1)\) dimensions are necessary for constructing the decision space of an \(M \)-ary decision problem.”

2. At most \((M-1)\) sufficient statistics are necessary to contain all the information for making a decision.

3. When \(c_{jj} = 0 \), \(\forall j \) (no cost for correct decision) and \(c_{ij} = 1 \), \(\forall i \neq j \)
(equal unit cost for incorrect decision), we have
\[
- \ c = \sum_{j=0}^{M-1} \sum_{i=0}^{M-1} P(H_j) \int_{D_i} f(r \mid H_j) \, dr
\]
\[
\Pr \{ H_j \text{ is sent and } H_i \text{ is decided} \}
\]
, i.e., the error probability, and the decision rule
\[
\sum_{j=0}^{M-1} P(H_j) \Lambda_j (r) = \min_{k \neq i} \sum_{j=0}^{M-1} P(H_j) \Lambda_j (r)
\](x)
leads us to an M-ary MEP test.
Now, dividing both sides of (x) by \(P(H_0) \) and defining that the a posteriori Probability ratio
\[
\Lambda_j^* (r) = \frac{P(H_i)}{P(H_0)} \Lambda_j (r) = \frac{P(H_i) f(r \mid H_i)}{P(H_0) f(r \mid H_0)}
\]
\[
= \frac{P(H_i \mid r) f(r)}{P(H_0 \mid r) f(r)}
\]
\[
= \frac{P(H_i \mid r)}{P(H_0 \mid r)}
\]
The MEP test is equivalent to “determining \(H_i \) if
\[
\sum_{j=0}^{M-1} \Lambda_j^* (r) = \min_{k \neq i} \sum_{j=0}^{M-1} \Lambda_j^* (r)
\]
\[
\Rightarrow \ \frac{1 - P(H_i \mid r)}{P(H_0 \mid r)} = \min_{k \neq i} \frac{1 - P(H_k \mid r)}{P(H_0 \mid r)}
\]
\[
\Rightarrow \ P(H_i \mid r) = \max_k P(H_k \mid r)
\]
which is a “maximum a posteriori probability” (MAP) test.

4. Question: can you find the extensions to M-ary minimax test and NP test?
Parameter Estimation Theory

Based on the observed r, the estimation rule is to extract the parameter \hat{a} being sent from the parameter space through the probabilistic mapping.

- Difference between hypothetical decision and parameter estimation is “hypothetic decision is to classify $r(\mu)$ out of M finite possible classes,” while parameter estimation is “to extract parameter out of $r(\mu)$, which takes on value out of (usually) an infinitely countable set or an infinite set.”

Ex: The problem that distinguishes two hypotheses

$$H_0 : r(\mu) = n(\mu) \quad H_1 : r(\mu) = a_1 + n(\mu)$$

is a decision problem.

The problem that determines a out of $r(\mu) = a_1 + n(\mu)$ probabilistic model is a parameter estimation problem.

- The parameter a to be estimated may be “random” or “nonrandom but unknown.”

§ Random Parameter Estimation (Considering $a(\mu) = a(\mu)$)

- Here, $a(\mu)$ is random and assumed of continuous type (in the real line).

- Random estimation is commonly known as Bayes estimation.

* Bayes Estimation
• Defns: 1. \(a_e \equiv \hat{a}(r) - a \) is the error of estimate \(\hat{a}(r) \), given that \(a(\mu) = a \) is sent.

2. \(c(a_e) \) is the cost associated with the estimation error \(a_e \).

• The cost function \(c(a_e) \) is commonly attributed with two properties:

1. \(c(a_e) = c(-a_e) \) (symmetric)

2. \(0 = c(0) \leq c(a_e) \)

• Three types of cost functions are considered:

 a. \(c(a_e) = a_e^2 \) (mean-square (MS) error cost)

 b. \(c(a_e) = |a_e| \) (absolute error cost)

 c. \(c(a_e) = \begin{cases} 0, & \text{if } |a_e| < \frac{\Delta}{2} \\ 1, & \text{otherwise} \end{cases} \) (uniform cost)

• The Bayes estimation is to find an estimate \(\hat{a}(r) \) that minimizes the \(E\{c(a_e(\mu))\} \), provided with a tractable cost function.

Note: 1. Bayes estimation assumes that the density \(f(a) \) is known a priori.

2. When \(f(a) \) is unknown, a minimax estimation, which finds \(\hat{a} \) that minimizes \(\max_{f(a)} E\{c(a_e)\} \), can be used. (not treated below)

Now, \(E\{c(a_e(\mu))\} = E\{c[a(r(\mu)) - a(\mu)]\} \)

\[
= \int_{-\infty}^{\infty} \int_{D} c[\hat{a}(r) - a] f(a, r) dr da
\]

\[
= \int_{D} \int_{-\infty}^{\infty} c[\hat{a}(r) - a] f(a | r) da f(r) dr
\]
The root of \(\frac{\partial}{\partial \hat{a}} E\{c(a_\sigma(\mu))\} = 0 \) may minimize \\
\(E\{c(a_\sigma(\mu))\} \) because the above integrand is \\
nonnegative. Furthermore, since only the inner \\
integral depends on \(\hat{a} \), Bayes estimation is \\
equivalent to finding the root of \\

\[
\frac{\partial}{\partial \hat{a}} \int_{-\infty}^{\infty} c[\hat{a}(r) - a] f(a \mid r)da = 0
\]

\\[\text{...............}(\#)\\]

- For the mean-square (MS) error function, \\

\[
(\#) \quad \Rightarrow -2 \int_{-\infty}^{\infty} a f(a \mid r)da + 2 \hat{a}_{MS}(r) \int_{-\infty}^{\infty} f(a \mid r)da = 0
\]

\[
\Rightarrow \hat{a}_{MS}(r) = \int_{-\infty}^{\infty} a f(a \mid r)da = E\{a(\mu) \mid r\}
\]

i.e., the MS estimate is the mean of the \textit{a posteriori} probability density.

- For the absolute (ABS) error function, \\

\[
(\#) \quad \Rightarrow \frac{\partial}{\partial \hat{a}} \int_{-\infty}^{\infty} |\hat{a} - a| f(a \mid r)da = 0
\]

\[
\Rightarrow \frac{\partial}{\partial \hat{a}} \int_{-\infty}^{\hat{a}} (\hat{a} - a)f(a \mid r)da + \frac{\partial}{\partial \hat{a}} \int_{\hat{a}}^{\infty} (a - \hat{a})f(a \mid r)da = 0
\]

\[
\Rightarrow \int_{-\infty}^{\hat{a}_{ABS}} f(a \mid r)da = \int_{\hat{a}_{ABS}}^{\infty} f(a \mid r)da = \frac{1}{2}
\]

i.e., the ABS estimate is the median of the \textit{a posteriori} probability
density.

- For the uniform (UNF) cost function,

The Bayes estimation has to minimize

\[
\hat{a}_{UNF} \text{ cost} + \frac{\Delta}{2}
\]

\[
1 - \int_{\hat{a}_{UNF} - \frac{\Delta}{2}}^{\hat{a}_{UNF} + \frac{\Delta}{2}} f(a \mid r) da
\]

When \(\Delta \) is arbitrarily close to zero (with \(\Delta > 0 \)), this implies that \(\hat{a}_{UNF}(r) \) should be the value that maximizes \(f(a \mid r) \). That is, the UNF estimate is the value of \(a \) that yields the maximum \(a \) posteriori probability density value.

Note: Such an estimate is called a maximum \(a \) posteriori probability (MAP) estimate.