Part III. Decision and Estimation Theories

§§ Decision Theory: Fundamentals

* A decision theory problem can be conceptually formulated as
(for a fixed time period)

- The source generates an output out of M choices, referred to as hypotheses labeled $H_0, H_1, \ldots, H_{M-1}$.

 <ex> In a binary digital communication system (M=2),

 $H_0 \rightarrow$ the hypothesis that “zero” is sent.
 $H_1 \rightarrow$ the hypothesis that “one” is sent.

 <ex> In a radar or sonar system (M=2),

 $H_0 \rightarrow$ the hypothesis that the target is absent.
 $H_1 \rightarrow$ the hypothesis that the target is present.

 <ex> In a M-ary modulation system,

 $H_i \rightarrow$ the hypothesis that the ith symbol waveform is sent.

- The probabilistic transition mechanism (PTM) introduces randomness into the transmission. It is commonly known as “noisy channel” in digital communications.

 <ex> Additive Noise Channel (e.g., AWGN, random interference, random jamming)

 <ex> Multiplicative Noise Channel (e.g., nonselective fading)

\[<ex> \text{Additive Noise Channel (e.g., AWGN, random interference, random jamming)} \]

\[<ex> \text{Multiplicative Noise Channel (e.g., nonselective fading)} \]
Random Filtering Channel (e.g., dispersive fading)

- \(\mathbf{r}(\mu) \) is the received N-dimensional vector and \(f(\mathbf{r}|H_i) \) is the conditional probability density of \(\mathbf{r}(\mu) \) given that \(H_i \) is sent.

- The observation space \(\mathbb{D} \) is the domain viewed by the detector (or, communication receiver).

The decision theory provides with the detector a theoretical framework from which the observation space is partitioned into \(M \) regions, \(D_0, D_1, \ldots, D_{M-1} \). This forms the “decision rule.” If the received \(\mathbf{r}(\mu) \) falls in \(D_i \), the detector decides that \(H_i \) is true.

In a M-ary modulation system, the demodulator implements the decision rule that determines which symbol waveform is currently transmitted.
§ Binary Decision (M=2)

* Consider

\[y_r(\mu) = [r_1(\mu), r_2(\mu), \ldots, r_N(\mu)] \]

is the received random vector.

PTM can be characterized by \(f(r|H_i), i=0,1 \), which is the conditional probability density of \(r(\mu) \), given that hypothesis \(H_i \) is sent.

\(D_i, i=0,1, \) are N-dim regions, \(D_0 \cup D_1 = \mathbb{D} \).

Given \(r(\mu) = r \), the decision rule is to determine

\[H_0 \text{ if } r \in D_0 \]
\[H_1 \text{ if } r \in D_1 \]

* The aim of the decision theory is to determine \(D_0 \) and \(D_1 \) such that a certain “optimality” can be achieved. That is, the choice of \(D_0 \) and \(D_1 \) has to optimize a “pre-determined” performance measure (pm). Such a process is called a criterion.

* Terminology:

\(P(H_i) \) is called an *a priori* probability.

\(P(H_i) \equiv \text{prob. that } H_i \text{ is sent.} \)

\(P(H_i|r) \) is called an *a posteriori* probability.

\(P(H_i|r) \equiv \text{prob. that } H_i \text{ is sent given that } r(\mu) = r \text{ is received.} \)

\(f(r|H_i) \) is called a likelihood density.

\(f(r|H_i) \equiv \text{prob. density of } r(\mu) \text{ given that } H_i \text{ is sent.} \)

* Bayes Criterion:

* Define the cost

\(C_{ij} \equiv \text{the cost that “} H_j \text{ is sent” and “} H_i \text{ is determined”} \)

Note: \(C_{ij} \geq 0 \) by default
• The Bayes criterion says that, given \(\{C_{ij}\} \), the decision rule should minimize the cost on the average.

Let \(\bar{C} \equiv \text{average cost} \)

\[
\bar{C} = \sum_{i=0}^{1} \sum_{j=0}^{1} C_{ij} P_{r}\left\{ \text{send } H_{j} \text{ "and" decide } H_{i}\right\} \\
= \sum_{i=0}^{1} \sum_{j=0}^{1} C_{ij} P_{r}\left\{ \text{send } H_{j}\right\} P_{r}\left\{ \text{decide } H_{i} \text{ } | \text{ send } H_{j}\right\} \\
= C_{00} P(H_{0}) \int_{D_{0}} f(r \mid H_{0}) \text{d}r + C_{01} P(H_{0}) \int_{D_{0}} f(r \mid H_{1}) \text{d}r \\
+ C_{10} P(H_{0}) \int_{D_{1}} f(r \mid H_{0}) \text{d}r + C_{11} P(H_{1}) \int_{D_{1}} f(r \mid H_{1}) \text{d}r \\
\]

Assumptions: \(C_{10} > C_{00} \) and \(C_{01} > C_{11} \)

(The cost of a wrong decision is higher than that of a correct one.)

\[
\bar{C} = C_{00} P(H_{0}) \int_{D_{0}} f_{D_{0}}(r \mid H_{0}) \text{d}r + C_{01} P(H_{0}) \int_{D_{0}} f_{D_{0}}(r \mid H_{1}) \text{d}r \\
+ C_{10} P(H_{0}) \int_{D_{0}} f_{D_{0}}(r \mid H_{0}) \text{d}r + C_{11} P(H_{1}) \int_{D_{1}} f_{D_{1}}(r \mid H_{1}) \text{d}r \\
= P(H_{0})(C_{10} + P(H_{1})C_{11} + P(H_{0})(C_{00} - C_{10})) \int_{D_{0}} f_{D_{0}}(r \mid H_{0}) \text{d}r \\
+ P(H_{1})(C_{01} - C_{11}) \int_{D_{0}} f_{D_{0}}(r \mid H_{1}) \text{d}r \\
= P(H_{0})C_{10} + P(H_{1})C_{11} \\
+ P(H_{1})(C_{01} - C_{11}) \int_{D_{0}} f_{D_{0}}(r \mid H_{1}) \text{d}r - P(H_{0})(C_{10} - C_{00}) \int_{D_{0}} f_{D_{0}}(r \mid H_{0}) \text{d}r \\
\]

\(\bar{C} \) can be minimized if we choose \(D_{0} \) whenever \(\{ \} < 0 \), i.e.,

\[
\frac{f(r \mid H_{1})}{f(r \mid H_{0})} \begin{cases} \\
H_{1} & \text{H}_{1} \rangle = \frac{(C_{10} - C_{00})P(H_{0})}{(C_{01} - C_{11})P(H_{1})} \\
H_{0} & \text{H}_{0} \langle \end{cases} \\
\]

where \(\langle \) means “determine \(H_{1} \text{ if } \{ \} < \) is true”.
Define the likelihood ratio (LR), \(\Lambda(r) \)
\[
\Lambda(r) = \frac{f(r \mid H_1)}{f(r \mid H_0)}
\]
and the threshold \(\eta_{Bayes} \) is
\[
\eta_{Bayes} = \frac{(C_{10} - C_{00})P(H_0)}{(C_{01} - C_{11})P(H_1)}.
\]

The above argument tells us that the Bayes criterion leads us to a likelihood ratio test (LRT)
\[
\begin{array}{c|c}
H_1 & \Lambda(r) > \eta_{Bayes} \\
H_0 & \Lambda(r) < \eta_{Bayes}
\end{array}
\]
which is tantamount to saying that the decision regions
\[
D_0 = \{ r \mid \Lambda(r) < \eta_{Bayes} \}
\]
\[
D_1 = \{ r \mid \Lambda(r) > \eta_{Bayes} \}
\]
minimize the average cost.

In many cases, it is convenient to use the equivalent test
\[
\ln \Lambda(r) > \ln \eta_{Bayes}
\]
since \(\ln(\cdot) \) is monotonically increasing.
This test is commonly known as the log likelihood ratio test (LLRT).

\[
<Ex*> \quad H_1 : r(\mu) = m_1 + n(\mu) \quad H_0 : r(\mu) = n(\mu)
\]
\[
\begin{array}{ccc}
\vec{m_1} & \oplus & r(\mu) \\
& \oplus & n(\mu) \\
& & 0 \oplus r(\mu)
\end{array}
\]
where (1) \(\vec{1} \) is an N-dimensional all-one vector
(2) \(r(\mu) \) and \(n(\mu) \) are both N-dimensional
(3) \(n(\mu) \) contains iid Gaussian rv’s, which have zero mean and variance \(\sigma^2 \).
Now,

\[\Lambda(r) = \frac{f(r \mid H_1)}{f(r \mid H_0)} = \frac{\prod_{i=1}^{N} f_{n_i}(r_i - m)}{\prod_{i=1}^{N} f_{n_i}(r_i)} = \frac{\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(r_i - m)^2}{2\sigma^2}}}{\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{r_i^2}{2\sigma^2}}} = \prod_{i=1}^{N} e^{-\frac{1}{2\sigma^2}(m^2 - 2r_i m)} \]

\[\Rightarrow \ln \Lambda(r) = -\frac{Nm^2}{2\sigma^2} + \frac{m}{\sigma^2} \sum_{i=1}^{N} r_i \]

\[\begin{array}{c|c}
H_1 & \ln \eta_{\text{Bayes}} \\
\hline
\sum_{i=1}^{N} r_i & \alpha \\
\hline
H_0 & < \\
\end{array} \]

where \(\alpha = \frac{\sigma^2}{m} \ln \eta_{\text{Bayes}} + \frac{Nm}{2} \)

Notes:

(1) Knowing \(\ell(r(\mu)) = \sum_{i=1}^{N} r_i(\mu) \) is just as good as knowing \(r \) for the purpose of decision optimization. This \(\ell(\mu) \) is called the sufficient statistic for this Bayes decision problem.

(2) In this example, we have a sufficient statistic which is a linear function of \(\{r_i(\mu)\}_{i=1}^{N} \).