
Width-Optimal Visibility Representations of
Plane Graphs

Speaker: Chun-Cheng Lin

Coauthors: Jia-Hao Fan Hsueh-I Lu Hsu-Chun Yen

National Taiwan University, Taipei, Taiwan

(Presented at the 18th International Symposium on
Algorithms and Computation (ISAAC 2007))

1/19

Outline

1 Introduction

2 Preliminaries

3 Our Width-Optimal Drawing Algorithm

4 Analysis

5 Conclusion

2/19

Introduction

Visibility Representation (a.k.a., Visibility Drawing)

Visibility Representation

Node segment

Edge segment

Measuring the drawing area in a grid

5
9

1

3 2

7

6

4

8

5

9

1

3

2

7

6

4

8

3/19

Introduction

Visibility Representation (a.k.a., Visibility Drawing)

Visibility Representation

Node segment

Edge segment

Measuring the drawing area in a grid

5
9

1

3 2

7

6

4

8

5

9

1

3

2

7

6

4

8

3/19

Introduction

Visibility Representation (a.k.a., Visibility Drawing)

Visibility Representation

Node segment

Edge segment

Measuring the drawing area in a grid

5
9

1

3 2

7

6

4

8

5

9

1

3

2

7

6

4

8

3/19

Introduction

Visibility Representation (a.k.a., Visibility Drawing)

Visibility Representation

Node segment

Edge segment

Measuring the drawing area in a grid

5
9

1

3 2

7

6

4

8

5

9

1

3

2

7

6

4

8

3/19

Introduction

Compactness of Visibility Representation

Otten and van Wijk (1978)
first known algorithm for visibility drawings;
no bound for the compactness of the output.

worst-case upper bound
required height required width

n−1 (Rosenstiehl & Tarjan, 1986; 2n−5 (Rosenstiehl & Tarjan,1986;

Tamassia & Tollis, 1986) Tamassia & Tollis, 1986;

b 15n
16 c (Zhang & He, 2003) Nummenmaa, 1992)

b 5n
6 c (Zhang & He, 2005) b 22n−42

15 c (Lin, Lu, and Sun, 2004)

b 4n−1
5 c (Zhang & He, 2006) b 13n−24

9 c (Zhang & He, 2005)
2n
3 +2d

√
n/2e (He & Zhang, 2006) 4n

3 +2d
√

ne (He & Zhang, 2006)

lower bound
The size of the required area is at least b 2n

3 c× (b 4n
3 c−3) (Zhang & He, 2005)

Lin, Lu, and Sun (2004) conjectured ...
no wider than 4n

3 +O(1).

4/19

Introduction

Compactness of Visibility Representation

Otten and van Wijk (1978)
first known algorithm for visibility drawings;
no bound for the compactness of the output.

worst-case upper bound
required height required width

n−1 (Rosenstiehl & Tarjan, 1986; 2n−5 (Rosenstiehl & Tarjan,1986;

Tamassia & Tollis, 1986) Tamassia & Tollis, 1986;

b 15n
16 c (Zhang & He, 2003) Nummenmaa, 1992)

b 5n
6 c (Zhang & He, 2005) b 22n−42

15 c (Lin, Lu, and Sun, 2004)

b 4n−1
5 c (Zhang & He, 2006) b 13n−24

9 c (Zhang & He, 2005)
2n
3 +2d

√
n/2e (He & Zhang, 2006) 4n

3 +2d
√

ne (He & Zhang, 2006)

lower bound
The size of the required area is at least b 2n

3 c× (b 4n
3 c−3) (Zhang & He, 2005)

Lin, Lu, and Sun (2004) conjectured ...
no wider than 4n

3 +O(1).

4/19

Introduction

Compactness of Visibility Representation

Otten and van Wijk (1978)
first known algorithm for visibility drawings;
no bound for the compactness of the output.

worst-case upper bound
required height required width

n−1 (Rosenstiehl & Tarjan, 1986; 2n−5 (Rosenstiehl & Tarjan,1986;

Tamassia & Tollis, 1986) Tamassia & Tollis, 1986;

b 15n
16 c (Zhang & He, 2003) Nummenmaa, 1992)

b 5n
6 c (Zhang & He, 2005) b 22n−42

15 c (Lin, Lu, and Sun, 2004)

b 4n−1
5 c (Zhang & He, 2006) b 13n−24

9 c (Zhang & He, 2005)
2n
3 +2d

√
n/2e (He & Zhang, 2006) 4n

3 +2d
√

ne (He & Zhang, 2006)

lower bound
The size of the required area is at least b 2n

3 c× (b 4n
3 c−3) (Zhang & He, 2005)

Lin, Lu, and Sun (2004) conjectured ...
no wider than 4n

3 +O(1).

4/19

Introduction

Compactness of Visibility Representation

Otten and van Wijk (1978)
first known algorithm for visibility drawings;
no bound for the compactness of the output.

worst-case upper bound
required height required width

n−1 (Rosenstiehl & Tarjan, 1986; 2n−5 (Rosenstiehl & Tarjan,1986;

Tamassia & Tollis, 1986) Tamassia & Tollis, 1986;

b 15n
16 c (Zhang & He, 2003) Nummenmaa, 1992)

b 5n
6 c (Zhang & He, 2005) b 22n−42

15 c (Lin, Lu, and Sun, 2004)

b 4n−1
5 c (Zhang & He, 2006) b 13n−24

9 c (Zhang & He, 2005)
2n
3 +2d

√
n/2e (He & Zhang, 2006) 4n

3 +2d
√

ne (He & Zhang, 2006)

lower bound
The size of the required area is at least b 2n

3 c× (b 4n
3 c−3) (Zhang & He, 2005)

Lin, Lu, and Sun (2004) conjectured ...
no wider than 4n

3 +O(1).

4/19

Introduction

Our Main Result

Theorem

Given an n-node plane triangulation G, a visibility drawing of G with its
width bounded by b4n

3 c−2 can be obtained in time O(n).

Our bound is the optimal
because our bound differs the previously known lower bound
4n
3 −3 (Zhang and He, 2005) only by a unit.

Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004]
about whether any visibility drawing no wider than 4n

3 +O(1) can
be obtained in polynomial time.

Rather than conventionally using canonical ordering,
st-numbering, or Schnyder’s realizer as the initial input, our
algorithm applies a new kind of ordering, called constructive
ordering , of G to constructing the visibility drawing.

5/19

Introduction

Our Main Result

Theorem

Given an n-node plane triangulation G, a visibility drawing of G with its
width bounded by b4n

3 c−2 can be obtained in time O(n).

Our bound is the optimal
because our bound differs the previously known lower bound
4n
3 −3 (Zhang and He, 2005) only by a unit.

Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004]
about whether any visibility drawing no wider than 4n

3 +O(1) can
be obtained in polynomial time.

Rather than conventionally using canonical ordering,
st-numbering, or Schnyder’s realizer as the initial input, our
algorithm applies a new kind of ordering, called constructive
ordering , of G to constructing the visibility drawing.

5/19

Introduction

Our Main Result

Theorem

Given an n-node plane triangulation G, a visibility drawing of G with its
width bounded by b4n

3 c−2 can be obtained in time O(n).

Our bound is the optimal
because our bound differs the previously known lower bound
4n
3 −3 (Zhang and He, 2005) only by a unit.

Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004]
about whether any visibility drawing no wider than 4n

3 +O(1) can
be obtained in polynomial time.

Rather than conventionally using canonical ordering,
st-numbering, or Schnyder’s realizer as the initial input, our
algorithm applies a new kind of ordering, called constructive
ordering , of G to constructing the visibility drawing.

5/19

Introduction

Our Main Result

Theorem

Given an n-node plane triangulation G, a visibility drawing of G with its
width bounded by b4n

3 c−2 can be obtained in time O(n).

Our bound is the optimal
because our bound differs the previously known lower bound
4n
3 −3 (Zhang and He, 2005) only by a unit.

Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004]
about whether any visibility drawing no wider than 4n

3 +O(1) can
be obtained in polynomial time.

Rather than conventionally using canonical ordering,
st-numbering, or Schnyder’s realizer as the initial input, our
algorithm applies a new kind of ordering, called constructive
ordering , of G to constructing the visibility drawing.

5/19

Preliminaries

Coalescing and Splitting Operations

in Gk+1 in Gk

(a) deg(vk+1) = 3 in Gk+1

1

1

vr

vp = u

vq

vk+1
Fk,1

vr

vp = u

vq

in Gk+1 in Gk

(b) deg(vk+1) = 4 in Gk+1

2

2

vr

vp = u

vs

vq
Fk,2 Fk,1

vr

vp = u

vs

vq

vk+1

in Gk+1 in Gk

(c) deg(vk+1) = 5 in Gk+1

3

3

vr

vp = u

vt vq
Fk,2

Fk,1Fk,3

vs

vk+1

vr

vp = u

vt vq

vs

When deg(vk+1) = 5,

α3(vk+1,u) = coalescing two nodes vk+1 and u

≡ detaching two faces

β3(vk+1,Fk,1,Fk,2,Fk,3) = splitting node vk+1 at faces Fk,1,Fk,2,Fk,3

≡ attaching two new faces
≡ inserting a node at faces Fk,1,Fk,2,Fk,3

6/19

Preliminaries

Coalescing and Splitting Operations

in Gk+1 in Gk

(a) deg(vk+1) = 3 in Gk+1

1

1

vr

vp = u

vq

vk+1
Fk,1

vr

vp = u

vq

in Gk+1 in Gk

(b) deg(vk+1) = 4 in Gk+1

2

2

vr

vp = u

vs

vq
Fk,2 Fk,1

vr

vp = u

vs

vq

vk+1

in Gk+1 in Gk

(c) deg(vk+1) = 5 in Gk+1

3

3

vr

vp = u

vt vq
Fk,2

Fk,1Fk,3

vs

vk+1

vr

vp = u

vt vq

vs

When deg(vk+1) = 5,

α3(vk+1,u) = coalescing two nodes vk+1 and u

≡ detaching two faces

β3(vk+1,Fk,1,Fk,2,Fk,3) = splitting node vk+1 at faces Fk,1,Fk,2,Fk,3

≡ attaching two new faces
≡ inserting a node at faces Fk,1,Fk,2,Fk,3

6/19

Preliminaries

Coalescing and Splitting Operations

in Gk+1 in Gk

(a) deg(vk+1) = 3 in Gk+1

1

1

vr

vp = u

vq

vk+1
Fk,1

vr

vp = u

vq

in Gk+1 in Gk

(b) deg(vk+1) = 4 in Gk+1

2

2

vr

vp = u

vs

vq
Fk,2 Fk,1

vr

vp = u

vs

vq

vk+1

in Gk+1 in Gk

(c) deg(vk+1) = 5 in Gk+1

3

3

vr

vp = u

vt vq
Fk,2

Fk,1Fk,3

vs

vk+1

vr

vp = u

vt vq

vs

When deg(vk+1) = 5,

α3(vk+1,u) = coalescing two nodes vk+1 and u

≡ detaching two faces

β3(vk+1,Fk,1,Fk,2,Fk,3) = splitting node vk+1 at faces Fk,1,Fk,2,Fk,3

≡ attaching two new faces
≡ inserting a node at faces Fk,1,Fk,2,Fk,3

6/19

Preliminaries

Coalescing and Splitting Operations

in Gk+1 in Gk

(a) deg(vk+1) = 3 in Gk+1

1

1

vr

vp = u

vq

vk+1
Fk,1

vr

vp = u

vq

in Gk+1 in Gk

(b) deg(vk+1) = 4 in Gk+1

2

2

vr

vp = u

vs

vq
Fk,2 Fk,1

vr

vp = u

vs

vq

vk+1

in Gk+1 in Gk

(c) deg(vk+1) = 5 in Gk+1

3

3

vr

vp = u

vt vq
Fk,2

Fk,1Fk,3

vs

vk+1

vr

vp = u

vt vq

vs

When deg(vk+1) = 5,

α3(vk+1,u) = coalescing two nodes vk+1 and u
≡ detaching two faces

β3(vk+1,Fk,1,Fk,2,Fk,3) = splitting node vk+1 at faces Fk,1,Fk,2,Fk,3

≡ attaching two new faces

≡ inserting a node at faces Fk,1,Fk,2,Fk,3

6/19

Preliminaries

Coalescing and Splitting Operations

in Gk+1 in Gk

(a) deg(vk+1) = 3 in Gk+1

1

1

vr

vp = u

vq

vk+1
Fk,1

vr

vp = u

vq

in Gk+1 in Gk

(b) deg(vk+1) = 4 in Gk+1

2

2

vr

vp = u

vs

vq
Fk,2 Fk,1

vr

vp = u

vs

vq

vk+1

in Gk+1 in Gk

(c) deg(vk+1) = 5 in Gk+1

3

3

vr

vp = u

vt vq
Fk,2

Fk,1Fk,3

vs

vk+1

vr

vp = u

vt vq

vs

When deg(vk+1) = 5,

α3(vk+1,u) = coalescing two nodes vk+1 and u
≡ detaching two faces

β3(vk+1,Fk,1,Fk,2,Fk,3) = splitting node vk+1 at faces Fk,1,Fk,2,Fk,3

≡ attaching two new faces
≡ inserting a node at faces Fk,1,Fk,2,Fk,3

6/19

Preliminaries

Constructive Ordering of a Plane Triangulation

Definition

Gk involves the k nodes v1,v2, ...,vk. We call π = (v1,v2, ...,vn) a constructive ordering
of a plane triangulation G if the following conditions hold for each k, 3≤ k≤ n:

1 Gk is a plane triangulation with outer edges v1v2, v2v3, v3v1;
2 if 3≤ k≤ n−1, then node vk+1 is split from a node in Gk, and the degree of node

vk+1 is three, four, or five in Gk+1.

G6 = G1

3 2
5

4

6

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Lemma

Every n-node plane triangulation G has a constructive ordering, which can be found in
O(n) time.

7/19

Preliminaries

Constructive Ordering of a Plane Triangulation

Definition

Gk involves the k nodes v1,v2, ...,vk. We call π = (v1,v2, ...,vn) a constructive ordering
of a plane triangulation G if the following conditions hold for each k, 3≤ k≤ n:

1 Gk is a plane triangulation with outer edges v1v2, v2v3, v3v1;
2 if 3≤ k≤ n−1, then node vk+1 is split from a node in Gk, and the degree of node

vk+1 is three, four, or five in Gk+1.

G6 = G1

3 2
5

4

6

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Lemma

Every n-node plane triangulation G has a constructive ordering, which can be found in
O(n) time.

7/19

Preliminaries

Constructive Ordering of a Plane Triangulation

Definition

Gk involves the k nodes v1,v2, ...,vk. We call π = (v1,v2, ...,vn) a constructive ordering
of a plane triangulation G if the following conditions hold for each k, 3≤ k≤ n:

1 Gk is a plane triangulation with outer edges v1v2, v2v3, v3v1;
2 if 3≤ k≤ n−1, then node vk+1 is split from a node in Gk, and the degree of node

vk+1 is three, four, or five in Gk+1.

G5
1

3 2
5

4 5
3

3 G6 = G1

3 2
5

4

6

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Lemma

Every n-node plane triangulation G has a constructive ordering, which can be found in
O(n) time.

7/19

Preliminaries

Constructive Ordering of a Plane Triangulation

Definition

Gk involves the k nodes v1,v2, ...,vk. We call π = (v1,v2, ...,vn) a constructive ordering
of a plane triangulation G if the following conditions hold for each k, 3≤ k≤ n:

1 Gk is a plane triangulation with outer edges v1v2, v2v3, v3v1;
2 if 3≤ k≤ n−1, then node vk+1 is split from a node in Gk, and the degree of node

vk+1 is three, four, or five in Gk+1.

G4
1

3 2

4

2

2 G5
1

3 2
5

4 5
3

3 G6 = G1

3 2
5

4

6

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Lemma

Every n-node plane triangulation G has a constructive ordering, which can be found in
O(n) time.

7/19

Preliminaries

Constructive Ordering of a Plane Triangulation

Definition

Gk involves the k nodes v1,v2, ...,vk. We call π = (v1,v2, ...,vn) a constructive ordering
of a plane triangulation G if the following conditions hold for each k, 3≤ k≤ n:

1 Gk is a plane triangulation with outer edges v1v2, v2v3, v3v1;
2 if 3≤ k≤ n−1, then node vk+1 is split from a node in Gk, and the degree of node

vk+1 is three, four, or five in Gk+1.

1

3 2

G3

1

1 G4
1

3 2

4

2

2 G5
1

3 2
5

4 5
3

3 G6 = G1

3 2
5

4

6

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Lemma

Every n-node plane triangulation G has a constructive ordering, which can be found in
O(n) time.

7/19

Preliminaries

Constructive Ordering of a Plane Triangulation

Definition

Gk involves the k nodes v1,v2, ...,vk. We call π = (v1,v2, ...,vn) a constructive ordering
of a plane triangulation G if the following conditions hold for each k, 3≤ k≤ n:

1 Gk is a plane triangulation with outer edges v1v2, v2v3, v3v1;
2 if 3≤ k≤ n−1, then node vk+1 is split from a node in Gk, and the degree of node

vk+1 is three, four, or five in Gk+1.

1

3 2

G3

1

1 G4
1

3 2

4

2

2 G5
1

3 2
5

4 5
3

3 G6 = G1

3 2
5

4

6

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Lemma

Every n-node plane triangulation G has a constructive ordering, which can be found in
O(n) time.

7/19

Our Width-Optimal Drawing Algorithm

L-Shape and the β1 Operation

L-shape

Regular L-shape Degenerated L-shape

right L-shape

left L-shape

The β1 operation (the degree-three splitting operation)

1

Fk,1

vp

vq

vr

wb = 1
wb + 2

vk+1

vp

vq

vr

(ii) For L-shapes with wb = 1

wb + 1

vk+1

vp

vq

vr

1

Fk,1

vp

vq

vr

wb

(i) For L-sahpes with wb >1

Fk,1

vp

vq

vr

wb

or

8/19

Our Width-Optimal Drawing Algorithm

L-Shape and the β1 Operation

L-shape

Regular L-shape Degenerated L-shape

right L-shape

left L-shape

The β1 operation (the degree-three splitting operation)

1

Fk,1

vp

vq

vr

wb = 1
wb + 2

vk+1

vp

vq

vr

(ii) For L-shapes with wb = 1

wb + 1

vk+1

vp

vq

vr

1

Fk,1

vp

vq

vr

wb

(i) For L-sahpes with wb >1

Fk,1

vp

vq

vr

wb

or

8/19

Our Width-Optimal Drawing Algorithm

The β2 Operation acting at two narrowest L-shapes

The β2 operation (the degree-four splitting operation)

(1-iii) lr: This case does not exist.

(1-iv) ll: This case is a reflectional
 symmetry of case (1-i).

(1-i) rr (1-ii) rl (2-i) rr (2-ii) rl

(y(vs) and y(vq) may not
necessarily be the same.)

(2-iv) ll: This case is a reflectional
 symmetry of case (2-i).

(a) The two input L-shapes do not share
 the same bottom node segment.

(b) The two input L-shapes share the
 same bottom node segment.

vk+1

vs

vp

vr

vq vq

vp

vs

vr

vk+1

vp

vq

vr

vs

vk+1

f1’f2’

f1f2

vp

vq

vr

vs

vk+1

f1’f2’

f1f2

vk+1

vq

vr

vs

vp

f1’f2’

f1f2

vq

vp

vs

vr
Fk,1

Fk,2

vr

vs

vp

vq

Fk,1 Fk,2

vp

vq

vr

vs

Fk,2 Fk,1

vp

vq

vr

vs

Fk,2 Fk,1

vp

vq

vr

vs
Fk,2 Fk,1

2 2 2 2 2

(2-iii) lr

9/19

Our Width-Optimal Drawing Algorithm

The β3 Operation acting at three narrowest L-shapes (1/3)

The degree-five splitting operation (1/3)

(2v-ii) rl: This case has the above
 two possible subcases.

(2v-i) rr: This case has the above
 two possible subcases.

(2v-iii) lr: This case is a reflectional symmetry of the case (2v-ii).

(2v-iv) ll: This case is a reflectional symmetry of the case (2v-i).

vr

vs

vt

vq

Fk,2
Fk,3

Fk,1

vp

vr

vs

vt

vq
Fk,2

Fk,3

Fk,1

vp

vk+1

vr

vs

vt

vq

vp

vr

vs

vt

vq

vp

vk+1

vr

vs

vt

vqFk,2

Fk,3

Fk,1

vp

vr

vs

vt

vq

vp

vk+1

vr

vs

vt

vq

vp
Fk,2

Fk,3

Fk,1

vr

vs

vt

vq

vp

vk+1

(2v-i-a) (2v-i-b) (2v-ii-a) (2v-ii-b)

3 3 3 3

(3-vi) lrl(3-ii) rrl (3-v) lrr(3-i) rrr

(3-iii) rlr: This case is a reflectional symmetry of the case (3-vi).

(3-iv) rll: This case is a reflectional symmetry of the case (3-ii).

(3-vii) llr: This case is a reflectional symmetry of the case (3-v).

(3-viii) lll: This case is a reflectional symmetry of the case (3-i).

vk+1

vq

vr

vt

vs

vp

vk+1

vqvs

vt

vp

vr

vp

vqvs

vt

vk+1

vr

vp

vq

vrvt

vk+1

vs

vp

vqvs

vt

Fk,2
Fk,1

Fk,3 vr

vp

vq

vr

vt

Fk,2
Fk,1

Fk,3

vs

vp

vq

vrvt

Fk,2
Fk,1

Fk,3

vs

vp

vqvs

vt
Fk,2

Fk,1
Fk,3

vr

3 3 3 3

(a) Only two input L-shapes are visible
 from the down side.

(b) All of the three input L-shapes share the same
 bottom node segment.

10/19

Our Width-Optimal Drawing Algorithm

The β3 Operation acting at three narrowest L-shapes (2/3)

The degree-five splitting operation (2/3)

(c) Two of the three input L-shapes share the same bottom node segment.

(2-viii) lll: This case is a reflectional
 symmetry of the case (2-i).

(2-iv) rll: This case is a reflectional
 symmetry of the case (2-ii).

(2-v) lrr

(2-vii) llr: This case is a reflectional
 symmetry of the case (2-v).

3

(2-iii) rlr: This case is a reflectional
 symmetry of the case (2-vi).

vt

vp

vqvs

Fk,2 Fk,1Fk,3
vr

vt

vp

vq

vs

Fk,1Fk,3 Fk,2

vr

vp

vq

vs

vt
Fk,2

Fk,1

Fk,3
vr

vk+1

vq

vs

vt

vp

vr

vr

vs

vt

vq

Fk,2
Fk,3Fk,1

vp

vk+1

vt

vq

vs

vr

vr

vs

vtvq

Fk,2

Fk,3
Fk,1

vp

vr

vs

vtvq

vp

vk+1

vt

vk+1

vqvs

vp

vr

vr

vs

vtvq

Fk,2
Fk,3

Fk,1

vp

vr

vs

vp

vq
Fk,2

Fk,3

Fk,1

vt

vr

vs

vk+1

vq

vt

vp

vr

vs

vtvq

vp

vk+1

(2-i-a) (2-i-b) (2-ii-a) (2-ii-b)

vp

vq

vr

vt

Fk,2

Fk,1

Fk,3

vs

vp

vq

vr

vt

vp

vs

(2-ii-c) (2-vi-a) (2-vi-b)
vr

vs

vt

vq

vk+1

vp

3 3 3 3 3 3 3

11/19

Our Width-Optimal Drawing Algorithm

The β3 Operation acting at three narrowest L-shapes (3/3)

The degree-five splitting operation (3/3)

(d) None of the three input L-shapes shares the same bottom node segment.

(1-vi) lrl: This case does not exist.

(1-viii) lll: This case is a reflectional symmetry of case (1-i).

(1-iv) rll: This case is a reflectional symmetry of case (1-ii).

(1-vii) llr: This case does not exist.

(1-i) rrr

(1-iii) rlr: This case does not exist.

(1-v) lrr: This case does not exist.

vr

vs

vt

vq

vp

vk+1

vr

vs

vt

vq

Fk,2

Fk,3

Fk,1

vp

vp

vq

vr

vt

Fk,2

Fk,1
Fk,3

vs

vr

vs

vt

vq

vk+1

vp

vk+1

vq

vr

vt

vs

vp

(1-ii-a) rrl (1-ii-b) rrl

vr

vs

vt

vq

Fk,2
Fk,3

Fk,1

vp

3 3 3

Observation

If every inner face in Gk is drawn as an L-shape, then we consider all the possible
cases of the β1, β2, and β3 operations.
Furthermore, the bottom node segment of any L-shape rather than input L-shapes is
not modified in executing the operation.

12/19

Our Width-Optimal Drawing Algorithm

The β3 Operation acting at three narrowest L-shapes (3/3)

The degree-five splitting operation (3/3)

(d) None of the three input L-shapes shares the same bottom node segment.

(1-vi) lrl: This case does not exist.

(1-viii) lll: This case is a reflectional symmetry of case (1-i).

(1-iv) rll: This case is a reflectional symmetry of case (1-ii).

(1-vii) llr: This case does not exist.

(1-i) rrr

(1-iii) rlr: This case does not exist.

(1-v) lrr: This case does not exist.

vr

vs

vt

vq

vp

vk+1

vr

vs

vt

vq

Fk,2

Fk,3

Fk,1

vp

vp

vq

vr

vt

Fk,2

Fk,1
Fk,3

vs

vr

vs

vt

vq

vk+1

vp

vk+1

vq

vr

vt

vs

vp

(1-ii-a) rrl (1-ii-b) rrl

vr

vs

vt

vq

Fk,2
Fk,3

Fk,1

vp

3 3 3

Observation

If every inner face in Gk is drawn as an L-shape, then we consider all the possible
cases of the β1, β2, and β3 operations.
Furthermore, the bottom node segment of any L-shape rather than input L-shapes is
not modified in executing the operation.

12/19

Our Width-Optimal Drawing Algorithm

Our Drawing Algorithm

1 Find a constructive ordering of G.

1

3 2
G3

1

1

1

3 2

4

G4

2

2

1

3 2
5

4 5

G5

3

3

1

3 2
5

4

6

G6 = G

2 Initially, generate all the (six) possible visibility drawings of G3.
3 For each insertion, use our splitting operations to maintain 6 drawings of Gk;

appropriately adjust the drawings of the other faces.

1st pair

1

2
D1

3 2

1

3
D2

2nd pair

2

1
3

D4

2

3
1

D3

3rd pair

3

1
2

D5

3

2
1

D6

1

3
2

4

2

1
3

4

3

2
1

4

1

3
2

4

2

1
3

4

3

2
1

4

1st pair

3rd pair

2nd pair1

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1st pair

2nd pair

3rd pair

2

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

3

4 Compress the width of every of the six drawings of Gn as much as possible.
Output the drawing with the narrowest width.

13/19

Our Width-Optimal Drawing Algorithm

Our Drawing Algorithm

1 Find a constructive ordering of G.

1

3 2
G3

1

1

1

3 2

4

G4

2

2

1

3 2
5

4 5

G5

3

3

1

3 2
5

4

6

G6 = G

2 Initially, generate all the (six) possible visibility drawings of G3.
3 For each insertion, use our splitting operations to maintain 6 drawings of Gk;

appropriately adjust the drawings of the other faces.

1st pair

1

2
D1

3 2

1

3
D2

2nd pair

2

1
3

D4

2

3
1

D3

3rd pair

3

1
2

D5

3

2
1

D6

1

3
2

4

2

1
3

4

3

2
1

4

1

3
2

4

2

1
3

4

3

2
1

4

1st pair

3rd pair

2nd pair1

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1st pair

2nd pair

3rd pair

2

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

3

4 Compress the width of every of the six drawings of Gn as much as possible.
Output the drawing with the narrowest width.

13/19

Our Width-Optimal Drawing Algorithm

Our Drawing Algorithm

1 Find a constructive ordering of G.

1

3 2
G3

1

1

1

3 2

4

G4

2

2

1

3 2
5

4 5

G5

3

3

1

3 2
5

4

6

G6 = G

2 Initially, generate all the (six) possible visibility drawings of G3.

3 For each insertion, use our splitting operations to maintain 6 drawings of Gk;
appropriately adjust the drawings of the other faces.

1st pair

1

2
D1

3 2

1

3
D2

2nd pair

2

1
3

D4

2

3
1

D3

3rd pair

3

1
2

D5

3

2
1

D6

1

3
2

4

2

1
3

4

3

2
1

4

1

3
2

4

2

1
3

4

3

2
1

4

1st pair

3rd pair

2nd pair1

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1st pair

2nd pair

3rd pair

2

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

3

4 Compress the width of every of the six drawings of Gn as much as possible.
Output the drawing with the narrowest width.

13/19

Our Width-Optimal Drawing Algorithm

Our Drawing Algorithm

1 Find a constructive ordering of G.

1

3 2
G3

1

1

1

3 2

4

G4

2

2

1

3 2
5

4 5

G5

3

3

1

3 2
5

4

6

G6 = G

2 Initially, generate all the (six) possible visibility drawings of G3.
3 For each insertion, use our splitting operations to maintain 6 drawings of Gk;

appropriately adjust the drawings of the other faces.

1st pair

1

2
D1

3 2

1

3
D2

2nd pair

2

1
3

D4

2

3
1

D3

3rd pair

3

1
2

D5

3

2
1

D6

1

3
2

4

2

1
3

4

3

2
1

4

1

3
2

4

2

1
3

4

3

2
1

4

1st pair

3rd pair

2nd pair1

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1st pair

2nd pair

3rd pair

2

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

3

4 Compress the width of every of the six drawings of Gn as much as possible.
Output the drawing with the narrowest width.

13/19

Our Width-Optimal Drawing Algorithm

Our Drawing Algorithm

1 Find a constructive ordering of G.

1

3 2
G3

1

1

1

3 2

4

G4

2

2

1

3 2
5

4 5

G5

3

3

1

3 2
5

4

6

G6 = G

2 Initially, generate all the (six) possible visibility drawings of G3.
3 For each insertion, use our splitting operations to maintain 6 drawings of Gk;

appropriately adjust the drawings of the other faces.

1st pair

1

2
D1

3 2

1

3
D2

2nd pair

2

1
3

D4

2

3
1

D3

3rd pair

3

1
2

D5

3

2
1

D6

1

3
2

4

2

1
3

4

3

2
1

4

1

3
2

4

2

1
3

4

3

2
1

4

1st pair

3rd pair

2nd pair1

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1st pair

2nd pair

3rd pair

2

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

3

4 Compress the width of every of the six drawings of Gn as much as possible.
Output the drawing with the narrowest width.

13/19

Our Width-Optimal Drawing Algorithm

Our Drawing Algorithm

1 Find a constructive ordering of G.

1

3 2
G3

1

1

1

3 2

4

G4

2

2

1

3 2
5

4 5

G5

3

3

1

3 2
5

4

6

G6 = G

2 Initially, generate all the (six) possible visibility drawings of G3.
3 For each insertion, use our splitting operations to maintain 6 drawings of Gk;

appropriately adjust the drawings of the other faces.

1st pair

1

2
D1

3 2

1

3
D2

2nd pair

2

1
3

D4

2

3
1

D3

3rd pair

3

1
2

D5

3

2
1

D6

1

3
2

4

2

1
3

4

3

2
1

4

1

3
2

4

2

1
3

4

3

2
1

4

1st pair

3rd pair

2nd pair1

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1st pair

2nd pair

3rd pair

2

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

3

4 Compress the width of every of the six drawings of Gn as much as possible.
Output the drawing with the narrowest width.

13/19

Our Width-Optimal Drawing Algorithm

Our Drawing Algorithm

1 Find a constructive ordering of G.

1

3 2
G3

1

1

1

3 2

4

G4

2

2

1

3 2
5

4 5

G5

3

3

1

3 2
5

4

6

G6 = G

2 Initially, generate all the (six) possible visibility drawings of G3.
3 For each insertion, use our splitting operations to maintain 6 drawings of Gk;

appropriately adjust the drawings of the other faces.

1st pair

1

2
D1

3 2

1

3
D2

2nd pair

2

1
3

D4

2

3
1

D3

3rd pair

3

1
2

D5

3

2
1

D6

1

3
2

4

2

1
3

4

3

2
1

4

1

3
2

4

2

1
3

4

3

2
1

4

1st pair

3rd pair

2nd pair1

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1st pair

2nd pair

3rd pair

2

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

3

4 Compress the width of every of the six drawings of Gn as much as possible.
Output the drawing with the narrowest width.

13/19

Analysis

Six Drawings =⇒ Three Pairs

Observation

The six drawings of every face F can be classified into three pairs,
where each node of F serves as a bottom node segment in each pair.
Furthermore, the input L-shapes of every splitting operation can be classified into three
pairs.

1st pair

1

2
D1

3 2

1

3
D2

2nd pair

2

1
3

D4

2

3
1

D3

3rd pair

3

1
2

D5

3

2
1

D6

1

3
2

4

2

1
3

4

3

2
1

4

1

3
2

4

2

1
3

4

3

2
1

4

1st pair

3rd pair

2nd pair1

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

1st pair

2nd pair

3rd pair

2

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

3

Note that the two drawings in a pair are almost the same except for the positions
of the topmost two node segments, so it suffices to concern one of the two
drawings.

14/19

Analysis

Six Drawings =⇒ Three Pairs

Observation

The six drawings of every face F can be classified into three pairs,
where each node of F serves as a bottom node segment in each pair.
Furthermore, the input L-shapes of every splitting operation can be classified into three
pairs.

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

1st pair

2nd pair

3rd pair

3

1

3 2

4
5

1

3 2

4

6

5

Gk+1Gk

3

Note that the two drawings in a pair are almost the same except for the positions
of the topmost two node segments, so it suffices to concern one of the two
drawings.

14/19

Analysis

Six Drawings =⇒ Three Pairs

Observation

The six drawings of every face F can be classified into three pairs,
where each node of F serves as a bottom node segment in each pair.
Furthermore, the input L-shapes of every splitting operation can be classified into three
pairs.

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

1st pair

2nd pair

3rd pair

3

1

3 2

4
5

1

3 2

4

6

5

Gk+1Gk

3

Note that the two drawings in a pair are almost the same except for the positions
of the topmost two node segments, so it suffices to concern one of the two
drawings.

14/19

Analysis

Six Drawings =⇒ Three Pairs

Observation

The six drawings of every face F can be classified into three pairs,
where each node of F serves as a bottom node segment in each pair.
Furthermore, the input L-shapes of every splitting operation can be classified into three
pairs.

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

1

3
2

4
5

6

2

1
3

5
4

6

1st pair

2nd pair

3rd pair

1st pair

2nd pair

3rd pair

3

1

3 2

4
5

1

3 2

4

6

5

Gk+1Gk

3

Note that the two drawings in a pair are almost the same except for the positions
of the topmost two node segments, so it suffices to concern one of the two
drawings.

14/19

Analysis

U-Shaped Insertion

(b) 1st pair (c) 2nd pair or 3rd pair

a3

a1

ai+2 a2

ai+1

...

...

Fk,1Fk,i

in Gk

in Gk+1

a2

a1

ai+2 a1

ai+1 ...
ai+3

f1’f2’

i

(a)

a1

...
...

x

y ai+3...

a1

...

x

y ai+3

i i
...

i

a1

a2

a3

Fk,1Fk,i

ai+2

...
ai+1

...

a1

a2

a3

ai+2

ai+3

...
ai+1

...

f1’f2’

All configurations of i adjacent
L-shapes with the same bottom
node segment exist. Here illust-
rates only the configuration rr...r.

No two L-shapes share the same bottom node segment;
otherwise, it violates Observation 2. Thus, there exist
only four possible configurations rr...r, rr...rl, ll...l, rll...l.
Here illustrate configurations rr...r, rr...rl.

a1

...
......

a1

...

or

(width + 2) (width + 1) (width + 1)

=⇒ The sum of widths of six drawings is increased by 2× (+2+1+1) = +8 units.

Observation

There exists a U-shaped constructive ordering for the drawings
produced by our algorithm.

5

9

1

3

2

7

6

4

8

15/19

Analysis

U-Shaped Insertion

(b) 1st pair (c) 2nd pair or 3rd pair

a3

a1

ai+2 a2

ai+1

...

...

Fk,1Fk,i

in Gk

in Gk+1

a2

a1

ai+2 a1

ai+1 ...
ai+3

f1’f2’

i

(a)

a1

...
...

x

y ai+3...

a1

...

x

y ai+3

i i
...

i

a1

a2

a3

Fk,1Fk,i

ai+2

...
ai+1

...

a1

a2

a3

ai+2

ai+3

...
ai+1

...

f1’f2’

All configurations of i adjacent
L-shapes with the same bottom
node segment exist. Here illust-
rates only the configuration rr...r.

No two L-shapes share the same bottom node segment;
otherwise, it violates Observation 2. Thus, there exist
only four possible configurations rr...r, rr...rl, ll...l, rll...l.
Here illustrate configurations rr...r, rr...rl.

a1

...
......

a1

...

or

(width + 2) (width + 1) (width + 1)

=⇒ The sum of widths of six drawings is increased by 2× (+2+1+1) = +8 units.

Observation

There exists a U-shaped constructive ordering for the drawings
produced by our algorithm.

5

9

1

3

2

7

6

4

8

15/19

Analysis

U-Shaped Insertion

(b) 1st pair (c) 2nd pair or 3rd pair

a3

a1

ai+2 a2

ai+1

...

...

Fk,1Fk,i

in Gk

in Gk+1

a2

a1

ai+2 a1

ai+1 ...
ai+3

f1’f2’

i

(a)

a1

...
...

x

y ai+3...

a1

...

x

y ai+3

i i
...

i

a1

a2

a3

Fk,1Fk,i

ai+2

...
ai+1

...

a1

a2

a3

ai+2

ai+3

...
ai+1

...

f1’f2’

All configurations of i adjacent
L-shapes with the same bottom
node segment exist. Here illust-
rates only the configuration rr...r.

No two L-shapes share the same bottom node segment;
otherwise, it violates Observation 2. Thus, there exist
only four possible configurations rr...r, rr...rl, ll...l, rll...l.
Here illustrate configurations rr...r, rr...rl.

a1

...
......

a1

...

or

(width + 2) (width + 1) (width + 1)

=⇒ The sum of widths of six drawings is increased by 2× (+2+1+1) = +8 units.

Observation

There exists a U-shaped constructive ordering for the drawings
produced by our algorithm.

5

9

1

3

2

7

6

4

8

15/19

Analysis

U-Shaped Insertion

(b) 1st pair (c) 2nd pair or 3rd pair

a3

a1

ai+2 a2

ai+1

...

...

Fk,1Fk,i

in Gk

in Gk+1

a2

a1

ai+2 a1

ai+1 ...
ai+3

f1’f2’

i

(a)

a1

...
...

x

y ai+3...

a1

...

x

y ai+3

i i
...

i

a1

a2

a3

Fk,1Fk,i

ai+2

...
ai+1

...

a1

a2

a3

ai+2

ai+3

...
ai+1

...

f1’f2’

All configurations of i adjacent
L-shapes with the same bottom
node segment exist. Here illust-
rates only the configuration rr...r.

No two L-shapes share the same bottom node segment;
otherwise, it violates Observation 2. Thus, there exist
only four possible configurations rr...r, rr...rl, ll...l, rll...l.
Here illustrate configurations rr...r, rr...rl.

a1

...
......

a1

...

or

(width + 2) (width + 1) (width + 1)

=⇒ The sum of widths of six drawings is increased by 2× (+2+1+1) = +8 units.

Observation

There exists a U-shaped constructive ordering for the drawings
produced by our algorithm.

5

9

1

3

2

7

6

4

8

15/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8 +8 +8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8 +8 +8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8 +8 +8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12

+8 +8 +8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8

+8 +8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8 +8

+8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8 +8 +8

= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8 +8 +8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8 +8 +8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Example

There exists a certain
U-shaped construct. order.
of the final six drawings
such that
we rebuild visibility drawings
according to the ordering in
which the final drawing with
the same visibility drawing
embedding of our output
has the minimum width.

Hence, the drawing with the
minimum width must be no
wider than the average of
8n−12, i.e.,
b 8n−12

6 c= b 4n
3 c−2.

So our output must be no
wider than b 4n

3 c−2.

1

2
3

2

3
1

3

1
2

deg-3
U-detach

1

3
2

5

2

1
3

5

3

2
1

5

deg-3
U-detach

1

3
2

4
5

2

1
3

5
4

3

2
1

4
5

deg-5
U-detach

3

2
1

4
5

6

2

1
3

5
4

6

1

3
2

4
5

6

our output

1

3
2

4
5

6
1

3
2

4
5

1

3
2

5

1

2
3

2

1
3

5
4

3

2
1

4
5

3

2
1

4
5

6

2

1
3

5
4

6

2

1
3

5

3

2
1

5

2

3
1

3

1
2

+1

+2

+1

+2

+1

+1

+2

+1

+1

min. among all

12 +8 +8 +8
= 12+(n−3)×8 = 8n−12

16/19

Analysis

Main Problem: Consecutive Degree-3 U-Shaped Insertions

1

Fk,1

vp

vq

vr

wb = 1
wb + 2

vk+1

vp

vq

vr

(ii) For L-shapes with wb = 1

wb + 1

vk+1

vp

vq

vr

1

Fk,1

vp

vq

vr

wb

(i) For L-sahpes with wb >1

Fk,1

vp

vq

vr

wb

or

(width + 1) (width + 2)

For example, if we insert a degree-3 node into the following purple drawings ...

v4

v3

v1

v2

v5

v5

v1

v2

v3

v4

v4

v2

v3

v1

v5

(width +1)

(width +2)

(width +2)

1

The sum of the widths of the 6 drawings is increased by at least 2× (+1+2+2) = +10

units.

17/19

Analysis

Main Problem: Consecutive Degree-3 U-Shaped Insertions

1

Fk,1

vp

vq

vr

wb = 1
wb + 2

vk+1

vp

vq

vr

(ii) For L-shapes with wb = 1

wb + 1

vk+1

vp

vq

vr

1

Fk,1

vp

vq

vr

wb

(i) For L-sahpes with wb >1

Fk,1

vp

vq

vr

wb

or

(width + 1) (width + 2)

For example, if we insert a degree-3 node into the following purple drawings ...

v4

v3

v1

v2

v5

v5

v1

v2

v3

v4

v4

v2

v3

v1

v5

(width +1)

(width +2)

(width +2)

1

The sum of the widths of the 6 drawings is increased by at least 2× (+1+2+2) = +10

units. 17/19

Analysis

Borrowing and Returning Widths

in the 2nd pair

in the 1st pair

v4

v3

v1

v2

v5

in the 3rd pair

v5

v1

v2

v3

v4

borrow
a unit

from v2v3v4.

v4

v2

v3

v1

v5

v4

v2

v3

v1

v5

A unit is

retruned
to v2v3v4.

v5

v1

v2

v3

v4

v6

v4

v3

v1

v2

v5

v6

v4

v3

v1

v2

v5

v6

v4

v2

v3

v1

v5v6

1

(width + 1)

(width + 1)

(width + 2)

18/19

Analysis

Borrowing and Returning Widths

in the 2nd pair

in the 1st pair

v4

v3

v1

v2

v5

in the 3rd pair

v5

v1

v2

v3

v4

borrow
a unit

from v2v3v4.

v4

v2

v3

v1

v5

v4

v2

v3

v1

v5

A unit is

retruned
to v2v3v4.

v5

v1

v2

v3

v4

v6

v4

v3

v1

v2

v5

v6

v4

v3

v1

v2

v5

v6

v4

v2

v3

v1

v5v6

1

(width + 1)

(width + 1)

(width + 2)

18/19

Conclusion

Conclusion

A linear-time algorithm to find a visibility drawing of a plane
triangulation no wider than b4n

3 c−2 has been proposed in this
work.

Our result improves upon the previously known upper bound
4n
3 +2d

√
ne, providing a positive answer to a conjecture about

whether an upper bound 4n
3 +O(1) on the required width can be

achieved for an arbitrary plane graph.

Our result achieves optimality in the upper bound of width
because the bound differs from the previously known lower
bound b4n

3 c−3 only by one unit.

A line of future work is to try to use our technique to find the
height-optimal visibility drawing.

19/19

Conclusion

Conclusion

A linear-time algorithm to find a visibility drawing of a plane
triangulation no wider than b4n

3 c−2 has been proposed in this
work.

Our result improves upon the previously known upper bound
4n
3 +2d

√
ne, providing a positive answer to a conjecture about

whether an upper bound 4n
3 +O(1) on the required width can be

achieved for an arbitrary plane graph.

Our result achieves optimality in the upper bound of width
because the bound differs from the previously known lower
bound b4n

3 c−3 only by one unit.

A line of future work is to try to use our technique to find the
height-optimal visibility drawing.

19/19

Conclusion

Conclusion

A linear-time algorithm to find a visibility drawing of a plane
triangulation no wider than b4n

3 c−2 has been proposed in this
work.

Our result improves upon the previously known upper bound
4n
3 +2d

√
ne, providing a positive answer to a conjecture about

whether an upper bound 4n
3 +O(1) on the required width can be

achieved for an arbitrary plane graph.

Our result achieves optimality in the upper bound of width
because the bound differs from the previously known lower
bound b4n

3 c−3 only by one unit.

A line of future work is to try to use our technique to find the
height-optimal visibility drawing.

19/19

Conclusion

Conclusion

A linear-time algorithm to find a visibility drawing of a plane
triangulation no wider than b4n

3 c−2 has been proposed in this
work.

Our result improves upon the previously known upper bound
4n
3 +2d

√
ne, providing a positive answer to a conjecture about

whether an upper bound 4n
3 +O(1) on the required width can be

achieved for an arbitrary plane graph.

Our result achieves optimality in the upper bound of width
because the bound differs from the previously known lower
bound b4n

3 c−3 only by one unit.

A line of future work is to try to use our technique to find the
height-optimal visibility drawing.

19/19

	Introduction
	Preliminaries
	Our Width-Optimal Drawing Algorithm
	Analysis
	Conclusion

