Width-Optimal Visibility Representations of Plane Graphs

Speaker: Chun-Cheng Lin

Coauthors: Jia-Hao Fan Hsueh-I Lu Hsu-Chun Yen

National Taiwan University, Taipei, Taiwan

(Presented at the 18th International Symposium on Algorithms and Computation (ISAAC 2007))

Outline

2 Preliminaries

Analysis

프 🖌 🛪 프 🛌

< < >> < <</>

Visibility Representation (a.k.a., Visibility Drawing)

Visibility Representation

- Node segment
- Edge segment
- Measuring the drawing area in a grid

< □ > < 向*

Visibility Representation (a.k.a., Visibility Drawing)

- Visibility Representation
- Node segment
- Edge segment
- Measuring the drawing area in a grid

Visibility Representation (a.k.a., Visibility Drawing)

- Visibility Representation
- Node segment
- Edge segment
- Measuring the drawing area in a grid

Visibility Representation (a.k.a., Visibility Drawing)

- Visibility Representation
- Node segment
- Edge segment
- Measuring the drawing area in a grid

Compactness of Visibility Representation

Otten and van Wijk (1978)

- first known algorithm for visibility drawings;
- no bound for the compactness of the output.

	worst-case up	per bound	
required height			
n-1	(Rosenstiehl & Tarjan, 1986;		(Rosenstiehl & Tarjan,1986;
	Tamassia & Tollis, 1986)		Tamassia & Tollis, 1986;
			Nummenmaa, 1992)
			(Zhang & He, 2005)
	(He & Zhang, 2006)		(He & Zhang, 2006)

< □ > < ^[] >

Compactness of Visibility Representation

- Otten and van Wijk (1978)
 - first known algorithm for visibility drawings;
 - no bound for the compactness of the output.

worst-case upper bound			
required height		required width	
n-1	(Rosenstiehl & Tarjan, 1986;	2n-5	(Rosenstiehl & Tarjan,1986;
	Tamassia & Tollis, 1986)		Tamassia & Tollis, 1986;
$\lfloor \frac{15n}{16} \rfloor$	(Zhang & He, 2003)		Nummenmaa, 1992)
$\left\lfloor \frac{5n}{6} \right\rfloor$	(Zhang & He, 2005)	$\lfloor \frac{22n-42}{15} \rfloor$	(Lin, Lu, and Sun, 2004)
$\lfloor \frac{4n-1}{5} \rfloor$	(Zhang & He, 2006)	$\lfloor \frac{13n-24}{9} \rfloor$	(Zhang & He, 2005)
$\frac{2n}{3} + 2\left\lceil \sqrt{n/2} \right\rceil$	(He & Zhang, 2006)	$\frac{4n}{3} + 2\left[\sqrt{n}\right]$	(He & Zhang, 2006)
lower bound			

< □ > < 同 > < 三 > <

Compactness of Visibility Representation

- Otten and van Wijk (1978)
 - first known algorithm for visibility drawings;
 - no bound for the compactness of the output.

worst-case upper bound			
required height		required width	
n-1	(Rosenstiehl & Tarjan, 1986;	2n-5	(Rosenstiehl & Tarjan, 1986;
	Tamassia & Tollis, 1986)		Tamassia & Tollis, 1986;
$\left\lfloor \frac{15n}{16} \right\rfloor$	(Zhang & He, 2003)		Nummenmaa, 1992)
$\left\lfloor \frac{5n}{6} \right\rfloor$	(Zhang & He, 2005)	$\lfloor \frac{22n-42}{15} \rfloor$	(Lin, Lu, and Sun, 2004)
$\lfloor \frac{4n-1}{5} \rfloor$	(Zhang & He, 2006)	$\left\lfloor \frac{13n-24}{9} \right\rfloor$	(Zhang & He, 2005)
$\frac{2n}{3} + 2\left\lceil \sqrt{n/2} \right\rceil$	(He & Zhang, 2006)	$\frac{4n}{3} + 2\left[\sqrt{n}\right]$	(He & Zhang, 2006)
lower bound			

- Lin, Lu, and Sun (2004) conjectured ...
 - no wider than $\frac{4n}{3} + O(1)$.

Compactness of Visibility Representation

- Otten and van Wijk (1978)
 - first known algorithm for visibility drawings;
 - no bound for the compactness of the output.

worst-case upper bound			
required height		required width	
n-1	(Rosenstiehl & Tarjan, 1986;	2n-5	(Rosenstiehl & Tarjan, 1986;
	Tamassia & Tollis, 1986)		Tamassia & Tollis, 1986;
$\lfloor \frac{15n}{16} \rfloor$	(Zhang & He, 2003)		Nummenmaa, 1992)
$\left\lfloor \frac{5n}{6} \right\rfloor$	(Zhang & He, 2005)	$\lfloor \frac{22n-42}{15} \rfloor$	(Lin, Lu, and Sun, 2004)
$\lfloor \frac{4n-1}{5} \rfloor$	(Zhang & He, 2006)	$\lfloor \frac{13n-24}{9} \rfloor$	(Zhang & He, 2005)
$\frac{2n}{3} + 2\left\lceil \sqrt{n/2} \right\rceil$	(He & Zhang, 2006)	$\frac{4n}{3} + 2\left[\sqrt{n}\right]$	(He & Zhang, 2006)
lower bound			
The size of the required area is at least $\lfloor \frac{2n}{3} \rfloor \times (\lfloor \frac{4n}{3} \rfloor - 3)$ (Zhang & He, 2005)			

- Lin, Lu, and Sun (2004) conjectured ...
 - no wider than $\frac{4n}{3} + O(1)$.

<ロ> < 回 > < 回 > < 回 > < 回 > .

Theorem

Given an *n*-node plane triangulation *G*, a visibility drawing of *G* with its width bounded by $\lfloor \frac{4n}{3} \rfloor - 2$ can be obtained in time O(n).

- Our bound is the optimal because our bound differs the previously known lower bound $\frac{4n}{3} 3$ (Zhang and He, 2005) only by a unit.
- Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004] about whether any visibility drawing no wider than $\frac{4n}{3} + O(1)$ can be obtained in polynomial time.
- Rather than conventionally using canonical ordering, st-numbering, or Schnyder's realizer as the initial input, our algorithm applies a new kind of ordering, called constructive ordering, of G to constructing the visibility drawing.

・ロット (雪) (山) (山)

Theorem

Given an *n*-node plane triangulation *G*, a visibility drawing of *G* with its width bounded by $\lfloor \frac{4n}{3} \rfloor - 2$ can be obtained in time O(n).

- Our bound is the optimal because our bound differs the previously known lower bound $\frac{4n}{3} 3$ (Zhang and He, 2005) only by a unit.
- Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004] about whether any visibility drawing no wider than $\frac{4n}{3} + O(1)$ can be obtained in polynomial time.
- Rather than conventionally using canonical ordering, st-numbering, or Schnyder's realizer as the initial input, our algorithm applies a new kind of ordering, called constructive ordering, of G to constructing the visibility drawing.

・ロット (雪) (山) (山)

Theorem

Given an *n*-node plane triangulation *G*, a visibility drawing of *G* with its width bounded by $\lfloor \frac{4n}{3} \rfloor - 2$ can be obtained in time O(n).

- Our bound is the optimal because our bound differs the previously known lower bound $\frac{4n}{3} 3$ (Zhang and He, 2005) only by a unit.
- Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004] about whether any visibility drawing no wider than $\frac{4n}{3} + O(1)$ can be obtained in polynomial time.
- Rather than conventionally using canonical ordering, st-numbering, or Schnyder's realizer as the initial input, our algorithm applies a new kind of ordering, called constructive ordering, of G to constructing the visibility drawing.

Theorem

Given an *n*-node plane triangulation *G*, a visibility drawing of *G* with its width bounded by $\lfloor \frac{4n}{3} \rfloor - 2$ can be obtained in time O(n).

- Our bound is the optimal because our bound differs the previously known lower bound $\frac{4n}{3} 3$ (Zhang and He, 2005) only by a unit.
- Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004] about whether any visibility drawing no wider than $\frac{4n}{3} + O(1)$ can be obtained in polynomial time.
- Rather than conventionally using canonical ordering, st-numbering, or Schnyder's realizer as the initial input, our algorithm applies a new kind of ordering, called constructive ordering, of G to constructing the visibility drawing.

Coalescing and Splitting Operations

æ.

Coalescing and Splitting Operations

(c) $deg(v_{k+1}) = 5$ in G_{k+1}

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 → のへの

When $deg(v_{k+1}) = 5$,

• $\alpha_3(v_{k+1}, u) =$ coalescing two nodes v_{k+1} and u

• $\beta_3(v_{k+1}, F_{k,1}, F_{k,2}, F_{k,3}) =$ splitting node v_{k+1} at faces $F_{k,1}, F_{k,2}, F_{k,3}$

Coalescing and Splitting Operations

When $deg(v_{k+1}) = 5$,

• $\alpha_3(v_{k+1}, u) =$ coalescing two nodes v_{k+1} and u

• $\beta_3(v_{k+1}, F_{k,1}, F_{k,2}, F_{k,3}) =$ splitting node v_{k+1} at faces $F_{k,1}, F_{k,2}, F_{k,3}$

Coalescing and Splitting Operations

When $deg(v_{k+1}) = 5$,

- α₃(v_{k+1}, u) = coalescing two nodes v_{k+1} and u ≡ detaching two faces
- $\beta_3(v_{k+1}, F_{k,1}, F_{k,2}, F_{k,3}) =$ splitting node v_{k+1} at faces $F_{k,1}, F_{k,2}, F_{k,3} \equiv$ attaching two new faces

Coalescing and Splitting Operations

When $deg(v_{k+1}) = 5$,

- α₃(v_{k+1}, u) = coalescing two nodes v_{k+1} and u ≡ detaching two faces
- $\beta_3(v_{k+1}, F_{k,1}, F_{k,2}, F_{k,3}) =$ splitting node v_{k+1} at faces $F_{k,1}, F_{k,2}, F_{k,3}$ \equiv attaching two new faces
 - \equiv inserting a node at faces $F_{k,1}, F_{k,2}, F_{k,3}$

Constructive Ordering of a Plane Triangulation

Definition

 G_k involves the k nodes $v_1, v_2, ..., v_k$. We call $\pi = (v_1, v_2, ..., v_n)$ a constructive ordering of a plane triangulation G if the following conditions hold for each k, $3 \le k \le n$:

 G_k is a plane triangulation with outer edges v_1v_2 , v_2v_3 , v_3v_1 ;

2 if $3 \le k \le n-1$, then node v_{k+1} is split from a node in G_k , and the degree of node v_{k+1} is three, four, or five in G_{k+1} .

Constructive Ordering of a Plane Triangulation

Definition

 G_k involves the k nodes $v_1, v_2, ..., v_k$. We call $\pi = (v_1, v_2, ..., v_n)$ a constructive ordering of a plane triangulation G if the following conditions hold for each k, $3 \le k \le n$:

 G_k is a plane triangulation with outer edges v_1v_2 , v_2v_3 , v_3v_1 ;

2 if $3 \le k \le n-1$, then node v_{k+1} is split from a node in G_k , and the degree of node v_{k+1} is three, four, or five in G_{k+1} .

イロト イポト イヨト イヨト

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Constructive Ordering of a Plane Triangulation

Definition

 G_k involves the k nodes $v_1, v_2, ..., v_k$. We call $\pi = (v_1, v_2, ..., v_n)$ a constructive ordering of a plane triangulation G if the following conditions hold for each k, $3 \le k \le n$:

 G_k is a plane triangulation with outer edges v_1v_2 , v_2v_3 , v_3v_1 ;

2 if $3 \le k \le n-1$, then node v_{k+1} is split from a node in G_k , and the degree of node v_{k+1} is three, four, or five in G_{k+1} .

イロト イポト イヨト イヨト

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Constructive Ordering of a Plane Triangulation

Definition

 G_k involves the *k* nodes $v_1, v_2, ..., v_k$. We call $\pi = (v_1, v_2, ..., v_n)$ a **constructive ordering** of a plane triangulation *G* if the following conditions hold for each *k*, $3 \le k \le n$:

2 if $3 \le k \le n-1$, then node v_{k+1} is split from a node in G_k , and the degree of node v_{k+1} is three, four, or five in G_{k+1} .

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

イロン イボン イヨン・

Constructive Ordering of a Plane Triangulation

Definition

 G_k involves the *k* nodes $v_1, v_2, ..., v_k$. We call $\pi = (v_1, v_2, ..., v_n)$ a **constructive ordering** of a plane triangulation *G* if the following conditions hold for each *k*, $3 \le k \le n$:

 \bigcirc G_k is a plane triangulation with outer edges v_1v_2 , v_2v_3 , v_3v_1 ;

2 if $3 \le k \le n-1$, then node v_{k+1} is split from a node in G_k , and the degree of node v_{k+1} is three, four, or five in G_{k+1} .

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Constructive Ordering of a Plane Triangulation

Definition

 G_k involves the *k* nodes $v_1, v_2, ..., v_k$. We call $\pi = (v_1, v_2, ..., v_n)$ a **constructive ordering** of a plane triangulation *G* if the following conditions hold for each *k*, $3 \le k \le n$:

 \bigcirc G_k is a plane triangulation with outer edges v_1v_2 , v_2v_3 , v_3v_1 ;

2 if $3 \le k \le n-1$, then node v_{k+1} is split from a node in G_k , and the degree of node v_{k+1} is three, four, or five in G_{k+1} .

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Lemma

Every *n*-node plane triangulation *G* has a constructive ordering, which can be found in O(n) time.

æ

イロン イボン イヨン・

L-Shape and the β_1 Operation

• L-shape

	Regular L-shape	Degenerated L-shape
right L-shape		
left L-shape		-

・ロン ・聞と ・ヨン ・ヨン

L-Shape and the β_1 Operation

L-shape

• The β_1 operation (the degree-three splitting operation)

3

イロン 不同 とくほう イヨン

The β_2 Operation acting at two narrowest L-shapes

• The β_2 operation (the degree-four splitting operation)

- the same bottom node segment.
- (b) The two input L-shapes share the same bottom node segment.

The β_3 Operation acting at three narrowest L-shapes (1/3)

• The degree-five splitting operation (1/3)

The β_3 Operation acting at three narrowest L-shapes (2/3)

• The degree-five splitting operation (2/3)

(c) Two of the three input L-shapes share the same bottom node segment.

・ロト ・ ア・ ・ ヨト ・ ヨト

The β_3 Operation acting at three narrowest L-shapes (3/3)

• The degree-five splitting operation (3/3)

(d) None of the three input L-shapes shares the same bottom node segment.

・ロト ・ 戸 ト ・ ヨ ト ・

The β_3 Operation acting at three narrowest L-shapes (3/3)

• The degree-five splitting operation (3/3)

(d) None of the three input L-shapes shares the same bottom node segment.

Observation

If every inner face in G_k is drawn as an L-shape, then we consider all the possible cases of the β_1 , β_2 , and β_3 operations.

Furthermore, the bottom node segment of any L-shape rather than input L-shapes is not modified in executing the operation.

・ロト ・ 同ト ・ ヨト ・ ヨト

Our Drawing Algorithm

Our Drawing Algorithm

Find a constructive ordering of *G*.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Our Drawing Algorithm

2 Initially, generate all the (six) possible visibility drawings of G_3 .

・ロト ・ ア・ ・ ヨト ・ ヨト

Initially, generate all the (six) possible visibility drawings of G_3 . For each insertion, use our splitting operations to maintain 6 drawings of G_k ; appropriately adjust the drawings of the other faces.

Initially, generate all the (six) possible visibility drawings of G_3 . For each insertion, use our splitting operations to maintain 6 drawings of G_k ; appropriately adjust the drawings of the other faces.

Initially, generate all the (six) possible visibility drawings of G_3 . For each insertion, use our splitting operations to maintain 6 drawings of G_k ; appropriately adjust the drawings of the other faces.

2

Initially, generate all the (six) possible visibility drawings of G_3 .

For each insertion, use our splitting operations to maintain 6 drawings of G_k ; appropriately adjust the drawings of the other faces.

Compress the width of every of the six drawings of G_n as much as possible. Output the drawing with the narrowest width.

Six Drawings \implies Three Pairs

Observation

The six drawings of every face F can be classified into three pairs, where each node of F serves as a bottom node segment in each pair. Furthermore, the input L-shapes of every splitting operation can be classified into thre pairs.

э

Six Drawings \implies Three Pairs

Observation

The six drawings of every face F can be classified into three pairs, where each node of F serves as a bottom node segment in each pair. Furthermore, the input L-shapes of every splitting operation can be classified into three pairs.

14/19

э

Six Drawings \implies Three Pairs

Observation

The six drawings of every face F can be classified into three pairs, where each node of F serves as a bottom node segment in each pair. Furthermore, the input L-shapes of every splitting operation can be classified into three pairs.

Six Drawings \implies Three Pairs

Observation

The six drawings of every face F can be classified into three pairs, where each node of F serves as a bottom node segment in each pair. Furthermore, the input L-shapes of every splitting operation can be classified into three pairs.

 Note that the two drawings in a pair are almost the same except for the positions of the topmost two node segments, so it suffices to concern one of the two drawings.

U-Shaped Insertion

æ

イロト 不同 とくほ とくほ とう

U-Shaped Insertion

э.

イロト 不同 とくほ とくほ とう

U-Shaped Insertion

 \implies The sum of widths of six drawings is increased by $2 \times (+2+1+1) = +8$ units.

э

U-Shaped Insertion

 \implies The sum of widths of six drawings is increased by $2 \times (+2+1+1) = +8$ units.

Observation

There exists a U-shaped constructive ordering for the drawings produced by our algorithm.

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Example

・ロン ・聞と ・ヨン ・ヨン

æ –

Example

• There exists a certain U-shaped construct. order. of the final six drawings such that

> we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

イロト イポト イヨト イヨト

э

Example

• There exists a certain U-shaped construct. order. of the final six drawings such that

Example

• There exists a certain U-shaped construct. order. of the final six drawings such that

Example

• There exists a certain U-shaped construct. order. of the final six drawings such that

Example

• There exists a certain U-shaped construct. order. of the final six drawings such that

Example

• There exists a certain U-shaped construct. order. of the final six drawings such that

Example

• There exists a certain U-shaped construct. order. of the final six drawings such that

> we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

• Hence, the drawing with the minimum width must be no wider than the average of 8n - 12, i.e., $\lfloor \frac{8n - 12}{6} \rfloor = \lfloor \frac{4n}{3} \rfloor - 2$.

Example

• There exists a certain U-shaped construct. order. of the final six drawings such that

> we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

• Hence, the drawing with the minimum width must be no wider than the average of 8n-12, i.e., $\lfloor \frac{8n-12}{6} \rfloor = \lfloor \frac{4n}{3} \rfloor - 2$.

• So our output must be no wider than $\lfloor \frac{4n}{3} \rfloor - 2$.

Main Problem: Consecutive Degree-3 U-Shaped Insertions

æ –

Main Problem: Consecutive Degree-3 U-Shaped Insertions

• For example, if we insert a degree-3 node into the following purple drawings ...

The sum of the widths of the 6 drawings is increased by at least $2 \times (+1 + 2 + 2) = +10$

Borrowing and Returning Widths

・ロン ・聞と ・ヨン ・ヨン

Borrowing and Returning Widths

◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 □

- A linear-time algorithm to find a visibility drawing of a plane triangulation no wider than $\lfloor \frac{4n}{3} \rfloor 2$ has been proposed in this work.
- Our result improves upon the previously known upper bound $\frac{4n}{3} + 2\lceil\sqrt{n}\rceil$, providing a positive answer to a conjecture about whether an upper bound $\frac{4n}{3} + O(1)$ on the required width can be achieved for an arbitrary plane graph.
- Our result achieves optimality in the upper bound of width because the bound differs from the previously known lower bound $\lfloor \frac{4n}{3} \rfloor 3$ only by one unit.
- A line of future work is to try to use our technique to find the height-optimal visibility drawing.

・ロト ・ 同ト ・ ヨト ・ ヨト

- A linear-time algorithm to find a visibility drawing of a plane triangulation no wider than $\lfloor \frac{4n}{3} \rfloor 2$ has been proposed in this work.
- Our result improves upon the previously known upper bound $\frac{4n}{3} + 2\lceil\sqrt{n}\rceil$, providing a positive answer to a conjecture about whether an upper bound $\frac{4n}{3} + O(1)$ on the required width can be achieved for an arbitrary plane graph.
- Our result achieves optimality in the upper bound of width because the bound differs from the previously known lower bound $\lfloor \frac{4n}{3} \rfloor 3$ only by one unit.
- A line of future work is to try to use our technique to find the height-optimal visibility drawing.

・ロット (雪) () () () ()

- A linear-time algorithm to find a visibility drawing of a plane triangulation no wider than $\lfloor \frac{4n}{3} \rfloor 2$ has been proposed in this work.
- Our result improves upon the previously known upper bound $\frac{4n}{3} + 2\lceil\sqrt{n}\rceil$, providing a positive answer to a conjecture about whether an upper bound $\frac{4n}{3} + O(1)$ on the required width can be achieved for an arbitrary plane graph.
- Our result achieves optimality in the upper bound of width because the bound differs from the previously known lower bound $\lfloor \frac{4n}{3} \rfloor 3$ only by one unit.
- A line of future work is to try to use our technique to find the height-optimal visibility drawing.

・ロット (雪) () () () ()

- A linear-time algorithm to find a visibility drawing of a plane triangulation no wider than $\lfloor \frac{4n}{3} \rfloor 2$ has been proposed in this work.
- Our result improves upon the previously known upper bound $\frac{4n}{3} + 2\lceil\sqrt{n}\rceil$, providing a positive answer to a conjecture about whether an upper bound $\frac{4n}{3} + O(1)$ on the required width can be achieved for an arbitrary plane graph.
- Our result achieves optimality in the upper bound of width because the bound differs from the previously known lower bound $\lfloor \frac{4n}{3} \rfloor 3$ only by one unit.
- A line of future work is to try to use our technique to find the height-optimal visibility drawing.

・ロト ・ 同ト ・ ヨト ・ ヨト