Width-Optimal Visibility Representations of Plane Graphs

Speaker: Chun-Cheng Lin

Coauthors: Jia-Hao Fan Hsueh-I Lu Hsu-Chun Yen
National Taiwan University, Taipei, Taiwan
(Presented at the 18th International Symposium on Algorithms and Computation (ISAAC 2007))

Outline

(1) Introduction
(2) Preliminaries
(3) Our Width-Optimal Drawing Algorithm
(4) Analysis
(5) Conclusion

Visibility Representation (a.k.a., Visibility Drawing)

- Visibility Representation
- Node segment
- Edge segment
- Measuring the drewing area in a grid

Visibility Representation (a.k.a., Visibility Drawing)

- Visibility Representation
- Node segment
- Edge segment
- Measuring the drawing area in a grid

Visibility Representation (a.k.a., Visibility Drawing)

- Visibility Representation
- Node segment
- Edge segment
- Measuring the drawing area in a grid

Visibility Representation (a.k.a., Visibility Drawing)

- Visibility Representation
- Node segment
- Edge segment
- Measuring the drawing area in a grid

Compactness of Visibility Representation

- Otten and van Wijk (1978)
- first known algorithm for visibility drawings;
- no bound for the compactness of the output.

Compactness of Visibility Representation

- Otten and van Wijk (1978)
- first known algorithm for visibility drawings;
- no bound for the compactness of the output.

WOrst-case upper bound			
	required height	required width	
$n-1$	(Rosenstiehl \& Tarjan, 1986;	$2 n-5$	(Rosenstiehl \& Tarjan,1986;
	Tamassia \& Tollis, 1986)		Tamassia \& Tollis, 1986;
$\left\lfloor\frac{15 n}{16}\right\rfloor$	(Zhang \& He, 2003)		Nummenmaa, 1992)
$\left\lfloor\frac{5 n}{6}\right\rfloor$	(Zhang \& He, 2005)	$\left\lfloor\frac{22 n-42}{15}\right\rfloor$	(Lin, Lu, and Sun, 2004)
$\left\lfloor\frac{4 n-1}{5}\right\rfloor$	(Zhang \& He, 2006)	$\left\lfloor\frac{13 n-24}{9}\right\rfloor$	(Zhang \& He, 2005)
$\frac{2 n}{3}+2\lceil\sqrt{n / 2}\rceil$	(He \& Zhang, 2006)	$\frac{4 n}{3}+2\lceil\sqrt{n}\rceil$	(He \& Zhang, 2006)

The size of the required area is at least $\left\lfloor\frac{2 n}{3}\right\rfloor \times\left(\left\lfloor\frac{4 n}{3}\right\rfloor-3\right)$ (Zhang \& He, 2005)

Compactness of Visibility Representation

- Otten and van Wijk (1978)
- first known algorithm for visibility drawings;
- no bound for the compactness of the output.

WOrst-case upper bound			
	required height	required width	
$n-1$	(Rosenstiehl \& Tarjan, 1986;	$2 n-5$	(Rosenstiehl \& Tarjan,1986;
	Tamassia \& Tollis, 1986)		Tamassia \& Tollis, 1986;
$\left\lfloor\frac{15 n}{16}\right\rfloor$	(Zhang \& He, 2003)		Nummenmaa, 1992)
$\left\lfloor\frac{5 n}{6}\right\rfloor$	(Zhang \& He, 2005)	$\left\lfloor\frac{22 n-42}{15}\right\rfloor$	(Lin, Lu, and Sun, 2004)
$\left\lfloor\frac{4 n-1}{5}\right\rfloor$	(Zhang \& He, 2006)	$\left\lfloor\frac{13 n-24}{9}\right\rfloor$	(Zhang \& He, 2005)
$\frac{2 n}{3}+2\lceil\sqrt{n / 2}\rceil$	(He \& Zhang, 2006)	$\frac{4 n}{3}+2\lceil\sqrt{n}\rceil$	(He \& Zhang, 2006)

The size of the required area is at least $\left\lfloor\frac{2 n}{3}\right\rfloor \times\left(\left\lfloor\frac{4 n}{3}\right\rfloor-3\right)$ (Zhang \& He, 2005)

- Lin, Lu, and Sun (2004) conjectured ...
- no wider than $\frac{4 n}{3}+O(1)$.

Compactness of Visibility Representation

- Otten and van Wijk (1978)
- first known algorithm for visibility drawings;
- no bound for the compactness of the output.

worst-case upper bound			
required height		required width	
$n-1$	(Rosenstiehl \& Tarjan, 1986; Tamassia \& Tollis, 1986)	$2 n-5$	(Rosenstiehl \& Tarjan,1986; Tamassia \& Tollis, 1986;
$\left\lfloor\frac{15 n}{16}\right\rfloor$	(Zhang \& He, 2003)		Nummenmaa, 1992)
$\left\lfloor\frac{5 n}{6}\right\rfloor$	(Zhang \& He, 2005)	$\left\lfloor\frac{22 n-42}{15}\right\rfloor$	(Lin, Lu, and Sun, 2004)
$\left\lfloor\frac{4 n-1}{5}\right\rfloor$	(Zhang \& He, 2006)	$\left\lfloor\frac{13 n-24}{9}\right\rfloor$	(Zhang \& He, 2005)
$\frac{2 n}{3}+2\lceil\sqrt{n / 2}\rceil$	(He \& Zhang, 2006)	$\frac{4 n}{3}+2\lceil\sqrt{n}\rceil$	(He \& Zhang, 2006)
lower bound			
The size of the required area is at least $\left\lfloor\frac{2 n}{3}\right\rfloor \times\left(\left\lfloor\frac{4 n}{3}\right\rfloor-3\right)$ (Zhang \& He, 2005)			

- Lin, Lu, and Sun (2004) conjectured ...
- no wider than $\frac{4 n}{3}+O(1)$.

Our Main Result

Theorem

Given an n-node plane triangulation G, a visibility drawing of G with its width bounded by $\left\lfloor\frac{4 n}{3}\right\rfloor-2$ can be obtained in time $O(n)$.

- Our bound is the optimal
because our bound differs the previously known lower bound $\frac{4 n}{3}-3$ (Zhang and He, 2005) only by a unit.
- Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004] about whether any visibility drawing no wider than $\frac{4 n}{2}+O(1)$ can be obtained in polynomial time.
- Rather than conventionally using canonical ordering, st-numbering, or Schnyder's realizer as the initial input, our algorithm applies a new kind of ordering, called constructive ordering, of G to constructing the visibility drawing.

Our Main Result

Theorem

Given an n-node plane triangulation G, a visibility drawing of G with its width bounded by $\left\lfloor\frac{4 n}{3}\right\rfloor-2$ can be obtained in time $O(n)$.

- Our bound is the optimal because our bound differs the previously known lower bound $\frac{4 n}{3}-3$ (Zhang and He, 2005) only by a unit.
- Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004]
about whether any visibility drawing no wider than $\frac{4 n}{3}+O(1)$ can
be obtained in polynomial time.
- Rather than conventionally using canonical ordering,
st-numbering, or Schnyder's realizer as the initial input, our algorithm applies a new kind of ordering, called constructive
ordering, of G to constructing the visibility drawing.

Our Main Result

Theorem

Given an n-node plane triangulation G, a visibility drawing of G with its width bounded by $\left\lfloor\frac{4 n}{3}\right\rfloor-2$ can be obtained in time $O(n)$.

- Our bound is the optimal
because our bound differs the previously known lower bound (Zhang and He, 2005) only by a unit.
- Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004] about whether any visibility drawing no wider than $\frac{4 n}{3}+O(1)$ can be obtained in polynomial time.
- Rather than conventionally using canonical ordering,
st-numbering, or Schnyder's realizer as the initial input, our
algorithm applies a new kind of ordering, called constructive
ordering, of G to constructing the visibility drawing.

Our Main Result

Theorem

Given an n-node plane triangulation G, a visibility drawing of G with its width bounded by $\left\lfloor\frac{4 n}{3}\right\rfloor-2$ can be obtained in time $O(n)$.

- Our bound is the optimal
because our bound differs the previously known lower bound (Zhang and He, 2005) only by a unit.
- Answering in the affirmative a conjecture of [Lin, Lu, Sun, 2004]
about whether any visibility drawing no wider than $\frac{4 n}{3}+O(1)$ can be obtained in polynomial time.
- Rather than conventionally using canonical ordering, st-numbering, or Schnyder's realizer as the initial input, our algorithm applies a new kind of ordering, called constructive ordering, of G to constructing the visibility drawing.

Coalescing and Splitting Operations

(a) $\operatorname{deg}\left(v_{k+1}\right)=3$ in G_{k+1}

(b) $\operatorname{deg}\left(v_{k+1}\right)=4$ in G_{k+1}

(c) $\operatorname{deg}\left(v_{k+1}\right)=5$ in G_{k+1}

Coalescing and Splitting Operations

(c) $\operatorname{deg}\left(v_{k+1}\right)=5$ in G_{k+1}

When $\operatorname{deg}\left(v_{k+1}\right)=5$,

- $\alpha_{3}\left(v_{k+1}, u\right)=$ coalescing two nodes v_{k+1} and u
- $\beta_{3}\left(v_{k+1}, F_{k, 1}, F_{k, 2}, F_{k, 3}\right)=$ splitting node v_{k+1} at faces $F_{k, 1}, F_{k, 2}, F_{k, 3}$

Coalescing and Splitting Operations

(a) $\operatorname{deg}\left(v_{k+1}\right)=3$ in G_{k+1}

(b) $\operatorname{deg}\left(v_{k+1}\right)=4$ in G_{k+1}

(c) $\operatorname{deg}\left(v_{k+1}\right)=5$ in G_{k+1}

When $\operatorname{deg}\left(v_{k+1}\right)=5$,

- $\alpha_{3}\left(v_{k+1}, u\right)=$ coalescing two nodes v_{k+1} and u
- $\beta_{3}\left(v_{k+1}, F_{k, 1}, F_{k, 2}, F_{k, 3}\right)=$ splitting node v_{k+1} at faces $F_{k, 1}, F_{k, 2}, F_{k, 3}$

Coalescing and Splitting Operations

(a) $\operatorname{deg}\left(v_{k+1}\right)=3$ in G_{k+1}

(b) $\operatorname{deg}\left(v_{k+1}\right)=4$ in G_{k+1}

(c) $\operatorname{deg}\left(v_{k+1}\right)=5$ in G_{k+1}

When $\operatorname{deg}\left(v_{k+1}\right)=5$,

- $\alpha_{3}\left(v_{k+1}, u\right)=$ coalescing two nodes v_{k+1} and u \equiv detaching two faces
- $\beta_{3}\left(v_{k+1}, F_{k, 1}, F_{k, 2}, F_{k, 3}\right)=$ splitting node v_{k+1} at faces $F_{k, 1}, F_{k, 2}, F_{k, 3}$ \equiv attaching two new faces

Coalescing and Splitting Operations

(a) $\operatorname{deg}\left(v_{k+1}\right)=3$ in G_{k+1}

(b) $\operatorname{deg}\left(v_{k+1}\right)=4$ in G_{k+1}

(c) $\operatorname{deg}\left(v_{k+1}\right)=5$ in G_{k+1}

When $\operatorname{deg}\left(v_{k+1}\right)=5$,

- $\alpha_{3}\left(v_{k+1}, u\right)=$ coalescing two nodes v_{k+1} and u \equiv detaching two faces
- $\beta_{3}\left(v_{k+1}, F_{k, 1}, F_{k, 2}, F_{k, 3}\right)=$ splitting node v_{k+1} at faces $F_{k, 1}, F_{k, 2}, F_{k, 3}$ \equiv attaching two new faces
\equiv inserting a node at faces $F_{k, 1}, F_{k, 2}, F_{k, 3}$

Constructive Ordering of a Plane Triangulation

Definition

G_{k} involves the k nodes $v_{1}, v_{2}, \ldots, v_{k}$. We call $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ a constructive ordering of a plane triangulation G if the following conditions hold for each $k, 3 \leq k \leq n$:
(1) G_{k} is a plane triangulation with outer edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$;
(2) if $3 \leq k \leq n-1$, then node v_{k+1} is split from a node in G_{k}, and the degree of node v_{k+1} is three, four, or five in G_{k+1}.

Constructive Ordering of a Plane Triangulation

Definition

G_{k} involves the k nodes $v_{1}, v_{2}, \ldots, v_{k}$. We call $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ a constructive ordering of a plane triangulation G if the following conditions hold for each $k, 3 \leq k \leq n$:
(1) G_{k} is a plane triangulation with outer edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$;
(2) if $3 \leq k \leq n-1$, then node v_{k+1} is split from a node in G_{k}, and the degree of node v_{k+1} is three, four, or five in G_{k+1}.

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Constructive Ordering of a Plane Triangulation

Definition

G_{k} involves the k nodes $v_{1}, v_{2}, \ldots, v_{k}$. We call $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ a constructive ordering of a plane triangulation G if the following conditions hold for each $k, 3 \leq k \leq n$:
(1) G_{k} is a plane triangulation with outer edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$;
(2) if $3 \leq k \leq n-1$, then node v_{k+1} is split from a node in G_{k}, and the degree of node v_{k+1} is three, four, or five in G_{k+1}.

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Constructive Ordering of a Plane Triangulation

Definition

G_{k} involves the k nodes $v_{1}, v_{2}, \ldots, v_{k}$. We call $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ a constructive ordering of a plane triangulation G if the following conditions hold for each $k, 3 \leq k \leq n$:
(1) G_{k} is a plane triangulation with outer edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$;
(2) if $3 \leq k \leq n-1$, then node v_{k+1} is split from a node in G_{k}, and the degree of node v_{k+1} is three, four, or five in G_{k+1}.

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Constructive Ordering of a Plane Triangulation

Definition

G_{k} involves the k nodes $v_{1}, v_{2}, \ldots, v_{k}$. We call $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ a constructive ordering of a plane triangulation G if the following conditions hold for each $k, 3 \leq k \leq n$:
(1) G_{k} is a plane triangulation with outer edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$;
(2) if $3 \leq k \leq n-1$, then node v_{k+1} is split from a node in G_{k}, and the degree of node v_{k+1} is three, four, or five in G_{k+1}.

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Constructive Ordering of a Plane Triangulation

Definition

G_{k} involves the k nodes $v_{1}, v_{2}, \ldots, v_{k}$. We call $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ a constructive ordering of a plane triangulation G if the following conditions hold for each $k, 3 \leq k \leq n$:
(1) G_{k} is a plane triangulation with outer edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{1}$;
(2) if $3 \leq k \leq n-1$, then node v_{k+1} is split from a node in G_{k}, and the degree of node v_{k+1} is three, four, or five in G_{k+1}.

Note that there always exists a node with degree 3, 4, or 5 in any plane triangulation.

Lemma

Every n-node plane triangulation G has a constructive ordering, which can be found in $O(n)$ time.

L-Shape and the β_{1} Operation

- L-shape

	Regular L-shape	Degenerated L-shape
right L-shape	\square	\square
left L-shape	\square	\square

L-Shape and the β_{1} Operation

- L-shape

	Regular L-shape	Degenerated L-shape
right L-shape	\square	\square
left L-shape	\square	\square

- The β_{1} operation (the degree-three splitting operation)

The β_{2} Operation acting at two narrowest L-shapes

- The β_{2} operation (the degree-four splitting operation)

(a) The two input L-shapes do not share the same bottom node segment.

(b) The two input L-shapes share the same bottom node segment.

The β_{3} Operation acting at three narrowest L-shapes ($1 / 3$)

- The degree-five splitting operation (1/3)

(a) Only two input L-shapes are visible from the down side.

(b) All of the three input L-shapes share the same bottom node segment.

The β_{3} Operation acting at three narrowest L-shapes (2/3)

- The degree-five splitting operation (2/3)

(c) Two of the three input L-shapes share the same bottom node segment.

The β_{3} Operation acting at three narrowest L-shapes (3/3)

- The degree-five splitting operation (3/3)

(1-iii) $\boldsymbol{r l r}$: This case does not exist.
(1-iv) rll: This case is a reflectional symmetry of case (1-ii).
(1-v) lrr: This case does not exist.
(1-vi) lrl: This case does not exist.
(1-vii) $l l r$: This case does not exist.
(1-viii) lll: This case is a reflectional symmetry of case (1-i).
(d) None of the three input L-shapes shares the same bottom node segment.

The β_{3} Operation acting at three narrowest L -shapes $(3 / 3)$

- The degree-five splitting operation (3/3)

(1-iii) $r l r$: This case does not exist.
(1-iv) rll: This case is a reflectional symmetry of case (1-ii).
(1-v) lrr: This case does not exist.
(1-vi) lrl: This case does not exist.
(1-vii) $l l r$: This case does not exist.
(1-viii) $l l l$: This case is a reflectional symmetry of case (1-i).
(d) None of the three input L-shapes shares the same bottom node segment.

Observation

If every inner face in G_{k} is drawn as an L-shape, then we consider all the possible cases of the β_{1}, β_{2}, and β_{3} operations.
Furthermore, the bottom node segment of any L-shape rather than input L-shapes is not modified in executing the operation.

Our Drawing Algorithm

Our Drawing Algorithm

(1) Find a constructive ordering of G.
$\stackrel{6}{7}$
*

$\stackrel{\beta_{3}}{\alpha_{3}}$

Our Drawing Algorithm

(1) Find a constructive ordering of G.

(2) Initially, generate all the (six) possible visibility drawings of G_{3}.

Our Drawing Algorithm

(1) Find a constructive ordering of G.

(2) Initially, generate all the (six) possible visibility drawings of G_{3}.
(3)

For each insertion, use our splitting operations to maintain 6 drawings of G_{k}; appropriately adjust the drawings of the other faces.

Our Drawing Algorithm

(1) Find a constructive ordering of G.

(2) Initially, generate all the (six) possible visibility drawings of G_{3}.For each insertion, use our splitting operations to maintain 6 drawings of G_{k}; appropriately adjust the drawings of the other faces.

Our Drawing Algorithm

(1) Find a constructive ordering of G.

$$
G_{6}=G
$$

(2) Initially, generate all the (six) possible visibility drawings of G_{3}.
(3) For each insertion, use our splitting operations to maintain 6 drawings of G_{k}; appropriately adjust the drawings of the other faces.

Our Drawing Algorithm

(1) Find a constructive ordering of G.

$$
G_{6}=G
$$

(2) Initially, generate all the (six) possible visibility drawings of G_{3}.
(3) For each insertion, use our splitting operations to maintain 6 drawings of G_{k}; appropriately adjust the drawings of the other faces.

(4) Compress the width of every of the six drawings of G_{n} as much as possible. Output the drawing with the narrowest width.

Six Drawings \Longrightarrow Three Pairs

Observation

The six drawings of every face F can be classified into three pairs, where each node of F serves as a bottom node segment in each pair.
Furthermore, the input L-shapes of every splitting operation can be classified into

1st pai

Six Drawings \Longrightarrow Three Pairs

Observation

The six drawings of every face F can be classified into three pairs, where each node of F serves as a bottom node segment in each pair.
Furthermore, the input L-shapes of every splitting operation can be classified into three

Six Drawings \Longrightarrow Three Pairs

Observation

The six drawings of every face F can be classified into three pairs, where each node of F serves as a bottom node segment in each pair.
Furthermore, the input L-shapes of every splitting operation can be classified into three pairs.

Six Drawings \Longrightarrow Three Pairs

Observation

The six drawings of every face F can be classified into three pairs, where each node of F serves as a bottom node segment in each pair.
Furthermore, the input L-shapes of every splitting operation can be classified into three pairs.

- Note that the two drawings in a pair are almost the same except for the positions of the topmost two node segments, so it suffices to concern one of the two drawings.

U-Shaped Insertion

U-Shaped Insertion

U-Shaped Insertion

\Longrightarrow The sum of widths of six drawings is increased by $2 \times(+2+1+1)=+8$ units.

U-Shaped Insertion

\Longrightarrow The sum of widths of six drawings is increased by $2 \times(+2+1+1)=+8$ units.

Observation

There exists a U-shaped constructive ordering for the drawings produced by our algorithm.

Example

Example

Example

- There exists a certain U-shaped construct. order. of the final six drawings such that we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

Example

- There exists a certain U-shaped construct. order. of the final six drawings such that we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

Example

- There exists a certain U-shaped construct. order. of the final six drawings such that we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

Example

- There exists a certain U-shaped construct. order. of the final six drawings such that we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

Example

- There exists a certain U-shaped construct. order. of the final six drawings such that we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

Example

- There exists a certain U-shaped construct. order. of the final six drawings such that we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.

Example

- There exists a certain U-shaped construct. order. of the final six drawings such that we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.
- Hence, the drawing with the minimum width must be no wider than the average of $8 n-12$, i.e., $\left\lfloor\frac{8 n-12}{6}\right\rfloor=\left\lfloor\frac{4 n}{3}\right\rfloor-2$.

Example

- There exists a certain U-shaped construct. order. of the final six drawings such that we rebuild visibility drawings according to the ordering in which the final drawing with the same visibility drawing embedding of our output has the minimum width.
- Hence, the drawing with the minimum width must be no wider than the average of $8 n-12$, i.e., $\left\lfloor\frac{8 n-12}{6}\right\rfloor=\left\lfloor\frac{4 n}{3}\right\rfloor-2$.
- So our output must be no wider than $\left\lfloor\frac{4 n}{3}\right\rfloor-2$.

Main Problem: Consecutive Degree-3 U-Shaped Insertions

(ii) For L-shapes with $w_{b}=1$
(width +2)

Main Problem: Consecutive Degree-3 U-Shaped Insertions

- For example, if we insert a degree-3 node into the following purple drawings ...

The sum of the widths of the 6 drawings is increased by at least $2 \times(+1+2+2)=+10$

Borrowing and Returning Widths

Borrowing and Returning Widths

Conclusion

- A linear-time algorithm to find a visibility drawing of a plane triangulation no wider than $\left\lfloor\frac{4 n}{3}\right\rfloor-2$ has been proposed in this work.
- Our result improves upon the previously known upper bound $\frac{4 n}{3}+2\lceil\sqrt{n}\rceil$, providing a positive answer to a conjecture about whether an upper bound $\frac{4 n}{3}+O(1)$ on the required width can be achieved for an arbitrary plane graph.
- Our result achieves optimality in the upper bound of width because the bound differs from the previously known lower bound $\left[\frac{4 n}{3}\right]-3$ only by one unit.
- A line of future work is to try to use our technique to find the height-optimal visibility drawing.

Conclusion

- A linear-time algorithm to find a visibility drawing of a plane triangulation no wider than $\left\lfloor\frac{4 n}{3}\right\rfloor-2$ has been proposed in this work.
- Our result improves upon the previously known upper bound $\frac{4 n}{3}+2\lceil\sqrt{n}\rceil$, providing a positive answer to a conjecture about whether an upper bound $\frac{4 n}{3}+O(1)$ on the required width can be achieved for an arbitrary plane graph.
- Our result achieves optimality in the upper bound of width because the bound differs from the previously known lower bound $\left\lfloor\frac{4 n}{3}\right\rfloor-3$ only by one unit.
- A line of future work is to try to use our technique to find the height-optimal visibility drawing.

Conclusion

- A linear-time algorithm to find a visibility drawing of a plane triangulation no wider than $\left\lfloor\frac{4 n}{3}\right\rfloor-2$ has been proposed in this work.
- Our result improves upon the previously known upper bound $\frac{4 n}{3}+2\lceil\sqrt{n}\rceil$, providing a positive answer to a conjecture about whether an upper bound $\frac{4 n}{3}+O(1)$ on the required width can be achieved for an arbitrary plane graph.
- Our result achieves optimality in the upper bound of width because the bound differs from the previously known lower bound $\left\lfloor\frac{4 n}{3}\right\rfloor-3$ only by one unit.
- A line of future work is to try to use our technique to find the height-optimal visibility drawing.

Conclusion

- A linear-time algorithm to find a visibility drawing of a plane triangulation no wider than $\left\lfloor\frac{4 n}{3}\right\rfloor-2$ has been proposed in this work.
- Our result improves upon the previously known upper bound $\frac{4 n}{3}+2\lceil\sqrt{n}\rceil$, providing a positive answer to a conjecture about whether an upper bound $\frac{4 n}{3}+O(1)$ on the required width can be achieved for an arbitrary plane graph.
- Our result achieves optimality in the upper bound of width because the bound differs from the previously known lower bound $\left\lfloor\frac{4 n}{3}\right\rfloor-3$ only by one unit.
- A line of future work is to try to use our technique to find the height-optimal visibility drawing.

