Problem 7.1.2 Solution
X1,Xy... X, are independent uniform random variables with mean value px = 7 and i =3

(b—a)?/12=3 (a+b)/2=7 (1)
Solving these equations vields a = 4 and b = 10 from which we can state the distribution of
X.

1/6 4<x<10

e ={ g @)
otherwise
(b) From Theorem 7.1, we know that.
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\‘ar[fti’lg(ﬁ }] = lé ] =T (3)

PX, zg]zfgmfxl (z) dx:/gw(l/e)dle/ﬁ (4)

(d) The variance of Mig(X) is much less than Var[X;]. Hence, the PDF of Ms(X) should
be much more concentrated about E[X]| than the PDF of X;. Thus we should expect

P[Mis(X) > 9] to be much less than P[X; > 9].
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As we predicted, P[M;s(X) > 9] < P[X; > 9].

) — 1 — ®(2.66) = 0.0039 (6)



Problem 7.1.3 Solution

This problem is in the wrong section since the standard errorisn’t defined until Section 7.3. However
is we peek ahead to this section, the problem isn’t very hard. Given the sample mean estimate
M, (X)), the standard error is defined as the standard deviation e, = +/Var[M,(X)]. In our
problem, we use samples X; to generate Y; = }sz For the sample mean M, (Y), we need to find

the standard error
Var[Y|
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Since X is a uniform (0,1) random variable,

E[Y]= /Ol,t dw—1/3, 2)
1

ztdx = 1/5. (3)
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Thus Var[Y] — 1/5 — (1/3)? — 4/45 and the sanmple mean M, (V') has standard error

43?1
Problem 7.2.2 Solution
We know from the Chebyshev inequality that
ok
P[X - E[X][>d<— (1)
Choosing ¢ = kox, we obtain
- 1
PIX-E[X]| 2 ko] < = 2)

The actual probability the Gaussian random variable Y is more than k standard deviations from
its expected value is

PlY E[Y]|=koyl|=PY EY]< koy|| PY E[Y]>=koy| (3)
— 2P {Y_—E[Y] > k} (4)

ay
= 2Q(k) (5)

The following table compares the upper bound and the true probahility:

| k=1 k=2 k=3 k—4 k—5 |
| Chebyshev bound | 1 0.250 0.111  0.0625 0.040 | (6)
| 2Q(k) |0.317  0.046 0.0027 6.33 x 107" 573 x 1077 |

The Chebyshev bound gets increasingly weak as k& goes up. As an example, for & = 4, the bound
exceeds the true probability by a factor of 1,000 while for £ = 5 the bound exceeds the actual
probability by a factor of nearly 100,000.



Problem 7.2.4 Solution
On each roll of the dice, a success, namely snzke eyes, occurs with probability p = 1/36. The
number of trials, R, needed for three successes is a Pascal (kK = 3, p) random variable with

E[R] = 3/p =108, Var[R] = 3(1 — p)/p? = 3780. (1)

(a) By the Markov inequality,

nl’ . n'l -~ E[‘R] 54 MoA Ty £t
PR > 250] € —— = — = 0.432. (2)
250 125

(b) By the Chebyshev inequality,

P[R>250] = P[R— 108 > 142 = P[|R — 108] > 149] (3)
\‘a,r[R]

= 0.1875. 4
= Tia2p (4)
(c) The exact value is P[R > 250] = an Pg(r). Since there is no way around summing the

>
Pascal PMF to find the CDF, this is what pascalcdf does.

>> 1-pascaledf(3,1/36,249)
ans =
0.0299

Thus the Markov and Chebyshev inequalities are valid bounds but not good estimates of

P[R > 250].

Problem 7.3.1 Solution
For an an arbitrary Gaussian (u, o) random variable Y,

Plp—oc<Y <p+o]=P[-0<Y —p < 0] (1)
_p —15}7;“51 (2)
—B(1) — B(—1) = 2B(1) — 1 = 0.6827. (3)

Note that Y can be any Gaussian random variable, including, for example, M,,(X) when X is
Gaussian. When X is not Gaussian, the same claim holds to the extent that the central limit
theorem promises that M, (X) is nearly Gaussian for large n.

Problem 7.3.4 Solution

(a) Since the expectation of a sum equals the sum of the expectations also holds for vectors,

T

E [M(n Z E [X(7) Z px = [x. (1)

=1



(b) The jth component of M(n) is M;(n) = £ 5°" | X;(4), which is just the sample mean of X.

T

Defining A; = {|Mj(n)  p4| = ¢}, we obscrvc that

P max \M;(n) — p;| 2 c| = P[A UAU -+ U Ay]. (2)
5=1.,

Applying the Chebyshev inequality to M;(n), we find that

Var[M,(n)] o7
P [A.?] < CQJ = ??_;2' (B\J

By the union bound,
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Since ZJ lcrj < 00, limy—oo Plmax;—,

M;(n) = | = d = 0.



Problem 7.3.6 Solution

(a) From Theorem 6.2, we have

n n—1 n
Var[Xi + -+ X,] =Y Var[X;] +2) Y Cov[X;, X}]
=1 1=1 =141

Note that Var[X;] = o2 and for j > i, Cov[X;, X;] = 0%a’~". This implies

n—1 n
Var[X| + -+ X,,] = no? + 20’22 Z a’l ™!
i=1 j=i+1
n—1 .
= no? —1—2022 (a—l—a2 —i—---—l—a”_ﬁ)
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With some more algebra, we obtain
. 5 2a0” 2a0? . .
Var[X) +---+ X, = no? + o (n—1)— @ (a+a®+--+a"")
1—a 1—a
n(l 4+ a)o? 2a0° _ L a ? 1
_ o —9 1—a”
( 1—a ) 1—a 7 1—a ( )

Since a/(1 — a) and 1 — ™! are both nonnegative,

el
Var[X; + -+ + X,,] < no? (1 + a)

—

(b) Since the expected value of a sum equals the sum of the expected values,

BM(X,,... X, = 2+ + B

T

_ Var[X1 + -+ + X, ~ o%(1+a)

Var[.-"’tir(X1,- . -3X31)] n2 - -n(l —a)

Applying the Chebyshev inequality to M (X1,....X,,) yvields

- Var[ﬂf(Xl.,...,Xn)] ~ a?(1+a)

PM(Xy,....X,) —p| = < 2 =0l — a)e2

(c) Taking the limit as n approaches infinity of the bound derived in part (b) yields

o1 +a)
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Thus
lim P[|M(X1,....X,,)—p| =2¢]=0
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Problem 7.4.1 Solution

0.1 =0
Px(z)=4 09 z=1 (1)
0 otherwise

(a) E[X] is in fact the same as Px (1) becanse X is a Bernoulli random variable.

(b) We can use the Chebyshev inequality to find

P[[Meo(X) — Py (1)| > .05] = P [|Myg(X) — E[X]| > .05] < a (2)
In particular, the Chebyshev inequality states that
2
x __ Y __,y4 (3)

“ T 900052 _ 90(.05)2

(¢) Now we wish to find the value of n such that P[|M,(X)— Px(1)| = .03] < .01. From the
Chebyshev inequality, we write
2
T .
0.1=—2>21. 4
n(.03)? ()

Since Jif = 0.09, solving for n yields n = 100.

Problem 7.4.3 Solution

(a) Since X4 is a Bernoulli (p = P[A]) random variable,
E[Xa] =P[A] = 0.8, Var[X 4] = P[A] (1 - P[A]) = 0.16. (1)
(b) Let X4 ; to denote X 4 on the ith trial. Since b, (A) = M,(Xa) = %Z;‘Zl XA,

Varl B, (4)] = 5 3 Varlx, | = LA ZIAD, 2)
i=1

n

(¢) Since Pygo(A) = Myo(X4), we can use Theorem 7.12(b) to write

« Var[X,] 016 |

For ¢ = 0.1, a = 0.16/[100(0.1)?] = 0.16. Thus, with 100 samples, our confidence coefficient
is1—a=0.84

(d) In this case, the number of samples n is unknown. Once again, we use Theorem 7.12(b) to

write v [X ] 0.16
ar|X 4 .
——=1-—=1—a. 4
2 2 « (4)

Pl

ﬁ';l(A)—P[A]‘ <c>1-

For ¢ = 0.1, we have confidence coefficient 1 — a = 0.95 if a = 0.16/[n(0.1)?] = 0.05, or
n = 320.



Problem 7.4.4 Solution
Since E[X] = px = p and Var[X] = p(1 — p), we use Theorem 7.12(b) to write

)
PMg(X)—pl<d>1l-——F"=1-n0a 1
[|M100(X) — p| | = 1002 (1)
For confidence coefficient 0.99, we require
p(l —p) .
. <001 or e¢>+/p(1—p). (2)
100c2 — -

Since p is unknown, we must ensure that the constraint is met for every value of p. The worst case
occurs at p = 1/2 which maximizes p(1 — p). In this case, c = \/m =1/2 is the smallest value of
c for which we have confidence coefficient of at least 0.99.

If Mgo(X) = 0.056, our interval estimate for p is

Migo(X) —c <p < Mygo(X) +c. (3)
Since p > 0, Mjgo(X) = 0.06 and ¢ = 0.5 imply that our interval estimate is
0 < p < 0.56. (4)

Our interval estimate is not very tight because because 100 samples is not very large for a confidence
coefficient of 0.99.

Problem 7.4.6 Solution
Both questions can be answered using the following equation from Example 7.6:

Po(4) - P14]| > ] < P[A](1-P[A])

P (1)

nc?

The unusual part of this problem is that we are given the true value of P[A]. Since P[A] = 0.01,
we can write

0.0099
<

P

Po(4) = P14 = ] @)

ne?
(a) In this part, we meet the requirement by choosing ¢ = 0.001 yielding

9900

n

P

P,(A)— P [A]( > 0.001] < (3)

Thus to have confidence level 0.01, we require that 9900/n < 0.01. This requires n > 990,000.
(b) In this case, we meet the requirement by choosing ¢ = 1072 P[A4] = 107°. This implies

P[A](1- P[4]) 0.0099 9.9 x 107 (@)
nc? - nl0-10 n

P||Pu(4) - P[4)| = | <

The confidence level 0.01 is met if 9.9 x 107/-1'1 —=0.01 or n = 9.9 x 10°.



