Problem 6.1.5 Solution
This problem should be in either Chapter 10 or Chapter 11.
Since each X; has zero mean, the mean of Y, is

E [Yn] =F [-Yn +-Yn—1 +-Xn—i] H'rg =0 '{1‘}

Sinece Y, has zero mean, the variance of Y, is

Var[Yy] = E [¥;7]
1
= 5 & [(Xn + Xn-1+ Xn2)7]
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Problem 6.2.4 Solution
In this problem, X and ¥ have joint PDF
; ) 8zy O0£y=<zx<1
Fxy () = { 0 otherwise (1)

We can find the PDF of W using Theorem 6.4: fu(w) = ff‘; fxylz,w—x)dr. The only tricky
part remaining is to determine the limits of the integration. First, for w < 0, fw(w) = 0. The
two remaining cases are shown in the accompanying figure. The shaded area shows where the joint
PDF fxy(x, y)is nonzero. The diagonal lines depict 4y = w — x as a function of x. The intersection
of the diagonal line and the shaded area define our limits of integration.

For 0 < w <1,
o
v fw (w) =] Ba(w — x) dr (2)
, 4 w2
s = dwa® - 82° /3], = 2w®/3 (3)
1] For 1 <w < 2,
"
1
fw (w) = f r(w —2)dr (4)
— > w2
Wik Wz = twa? — 8233, (5)
= 4w —8/3 — 2u?/3 (6)
Sinee X +V < 2, fiy(w) =0 for w > 2. Henece the complete expression for the PDF of W is
?wa,f:i D<w <1
fw(w)=¢ dw—8/3—2w¥/3 1<w<2 (7)

0 otherwise



Problem 6.2.5 Solution
We first find the CDF of W following the same procedure as in the proof of Theorem G.4.

oo pytw
Fy @) =PX<Y+ul= [ [ fxy @) deay (1)

Bv taking the derivative with respect to w, we obtain

o dFw (w) g o :
() = B L[ fr () dn) @
=f fxy (w+y,y) dy (3)
With the variable substitution y = x — w, we have dy = dr and
fw )= [ fxy (@a—w) ds (4)
Problem 6.3.5 Solution
The PMF of K is i ,
I/n k=12 ....n
B = { 0 otherwise (1)
The corresponding MGF of K is
- 1
Ok (s) = E ] = = (e* + ™ + - + ™) (2)
= E_S o8 2% 4 ... n—1)s
—”(I+ +e 4. te ) (3)
stns - -1"-]
ek M - A 1
nie*—1) )

We can evaluate the moments of K by taking derivatives of the MGF. Some algebra will show that

.{E{r-"yg{,g) - }hf_.w-(n'fﬁjﬂ - {'ﬂ-"’r ljeﬁlﬂnl}a + &4
ds n(es — 1)2

(5)

Evaluating dog(s)/ds at s = 0 yields 0/0.  Hence, we apply 'Hopital’s rule twice (by twice
differentiating the numerator and twice differentiating the denominator) when we write

d(ﬂK{S} . onln+ Q‘JE(II+QJS i 1:]26"“+1}5 4+ €8
= lim : (6)
ds |,_g 50 2n(et — 1)
_a(n+ 2)2e02= _ (n 4 1)3elHs . o8 ‘ )
~ e = (n+1)/2 1)
A significant amount of algebra will show that the second derivative of the MGF is
Pog(s)  nlemtds _ (@2 4 2 — 1)t 4 (n 4 1)2rFDs _ 25 _ s (8)

ds? n(es — 1)3



Evaluating d2¢ (s qu at s = 0 yields 0/0. Because (e — 1) appears in the denominator, we
need to use 'Hopital’s rule three times to obtain our answer.

Pog(s)| i n?(n+ 3)%em s — (202 + 2n — 1)(n 4+ 2)2e 2 4 (n + 1)° — Be?® — ¢ (0)
de? | o ey Gne® .
B n2n+3t -2+ —1D)n+2°8+n+1°-9 (10)
B Gin
=(2n+1)(n+1)/6 (11)

We can use these results to derive two well known results. We observe that we can directly use the
PMF Py (k) to calculate the moments

e i : 5 2 46y
_-n.zﬂ' E[h]_nzﬂ (12)
=1 k=1

Using the answers we found for E[K] and E[K?], we have the formulas

B ra—i—lj g n{n+1)(2n+1) )
fo Zk Z (13)

Problem 6.4.7 Solution
By Theorem 6.8, we know that ¢pr(s) = [ox (8)]™.

(a) The first derivative of @ps(s) is

dop(s) n—1 29K ()
5 nleigl” S — (1)
We can evaluate dgag(s) /ds at s = 0 to find E[M].
E[M]= 22| g teyt GPKLS J) -, K] (2)
ds =
s=0 s=0
(b) The second derivative of ¢yr(s) 1s
: N2 2,
L) _ n(n—1) ()] (—‘f‘-ﬁ;; {"”) + (ot ) (3)
Evaluating the second derivative at s = 0 yields
E[M*] = % =n(n—1)(E[K])* +nE [K7] (4)
{-] s=0




Problem 6.5.2 Solution
The number N of passes thrown has the Poisson PMF and MGF

(30)"e=3%/n! n=0,1,...

_ o poy _ 30(e’—1)
Py (n) = { 0 otherwise dn(s) =€ (1)

Let X; = 1 if pass ¢ is thrown and completed and otherwise X; = 0. The PMF and MGF of each
:{-;‘ is
1/3 2=0
Py.(z) =X 2/3 ==1 ox.(8) =1/34(2/3)€’ (2)
0 otherwise

The nmumber of completed passes can be written as the random sum of random variables
K=Xi+ -++Xn (3)

Since each Xj is independent of N, we can use Theorem 6.12 to write

1 (s) = on (Inpx (s)) = e¥0@x (=1 — S0E/A =) (4)
We see that K has the MGF of a Poisson random variable with mean E[K] = 30(2/3) = 20,
variance Var[K| = 20, and PMF

s [0y B Rl B=0,1,..
Fie (k) = { ( otherwise

(5)

Problem 6.5.8 Solution
Using N to denote the nmmber of games plaved, we can write the total nnmber of points earned as
the random sum

Y =X+ Xp -+ Xy (1)

(a) It is tempting to use Theorem 6.12 to find ¢y (s); however, this would be wrong since each X;
is not independent of V. In this problem, we must start from frst principles using iterated
expectations.

dv(s)=E [E [esfxi"'"""x”:' F‘HH = Z Py (n)E [ES{XH'”"'X“”N = n] (2)
n=1

Given N = n, X1, ..., X, are independent so that

N=n].--E [e*X|N = n] (3)

E IZESL:X1-|—...-|-XH:||_I,1\;- = ﬂ-] o 5 [ESXI |_."'|.-T = ?’l] E [ES.XQ

Given N = n, we know that games 1 through nn — 1 were either wins or ties and that game n
was a loss. That is, given N =n, X, = 0 and for i < n, X; £ 0. Moreover, for i < n, X; has
the conditional PMF

Pxyn=n(2) = Px;x;20 (%) = { éfﬁ E:L;eiﬁise *)
These tacts imply
Efe**|N=n]=¢"=1 (5)
and that for ¢ = n,
E [e¥%|N = n] = (1/2)€" + (1/2)e* = /2 + e* /2 (6)




Now we can find the MGF of V.

o 4]
dy (8) = Z Py (n) E [es*t|N = n] E [e5X2

n=1

[ 4}
= Z Py (n) [e°/2 + €2 /2] =
n=1

N =n]---E[e¥*"|N =n] (7)

. ZPN (n) [esf2+r:‘gsf2]n (%)
=]

- es /2 +e2s /2
—

It follows that

]' = = Bah g I ]. .S 2 2s 2
oy (8) Z Py (n) el +e*)/2 _ O (Infe®/2 + e*/2]) (9)
=1

T2+ 2 es /2 + e2=/2

The tournament ends as soon as you lose a game. Since each game is a loss with probability
1/3 independent of any previous game, the number of games plaved has the geometric PMF
and corresponding MGF

(2/3)"1(1/3) n=1,2,... , (1/3)e*

Pr (n) = { ] otherwise on(s) = m (10)
Thus, the MGF of ¥ 1s
_ ] 1/3 11
moig)] =
ol 1—(es+e28)/3 (1)
(b) To find the moments of Y, we evaluate the derivatives of the MGF ay-(s). Since
P E PR
dgy (s) _ e* + 2¢ : (12)
ds 01 —es/3 —e2s/3]
we see that b 8] 2
Py (8] _ o :
F= T, Tae o

If you're curious, you may notice that E[Y]| = 3 precisely equals E[N]E[X;], the answer you
wonld get if von mistakenly assumed that N and each X; were independent, Althongh this
may seem like a coincidence, its actually the result of theorem known as Wald’s equality.

The second derivative of the MGF is

Py (s) _ (1—€'/3— e2/3)(e" +4e¥) + (e + 2621/

= 14
ds? 0(1 —es/3—e2s/3)3 1)
The second moment of ¥ is
d*oy (s) 5/3+6
EYY = —— = — 93 15
[ ] .;-ISE s=( 1};3 ( J}

The variance of ¥ is Var[Y] = E[Y?] — (E[Y])? =23 —0 = 14,



Problem 6.6.2 Solution

knowing that the probability that voice call oceurs is 0.8 and the probability that a data call oceurs
is 0.2 we can define the random variable ) as the number of data calls in a single telephone call.
It is obvious that for anv i there are only two possible values for I);, namely 0 and 1. Furthermore
for all ¢ the [)'s are independent and identically distributed withe the following PMEF.

08 d=10
Pp(d) = 02 d=1 (1)
{ atherwise

From the above we can determine that
E[D]| =02 Var [D] = 0.2 — 0.04 = 0.16 (2)
With these facts, we can answer the questions posed by the problem.
(a) E[Kim] = 100E[D] =20
(b) Var[Kipo] = /100 Var[D] = /16 = 4
(¢) PlKygp = 18] =1 — @ (E52) = 1 — 9(—1/2) = 9(1/2) = 0.6915
(d) P[16 < Kypp = 24] = @f%ﬂ) — tlif%ﬂj =®(1) — P(—1) =2®(1) — 1 = 0.6826

Problem 6.7.1 Solution

In Problem 6.2.6, we learned that a sum of iid Poisson random variables is a Polsson random
variable. Hence W5, is a Poisson random variable with mean E[W5] = nE[K]| = n. Thus W, has
variance Var[Wy| = n and PMF

e M wl w=0,1,2,...
P, (w) = { 0 otherwise (1)
All of this implies that we can exactly calculate
P Wy =n] = Py, (n) =n"e " (n! (2)

Sinee we can perform the exact caleulation, using a central limit theorem may seem silly; however
tor large n, calculating n™ or n! 18 difficult for large n. Moreover, it's interesting to see how good
the approximation is. In this case, the approximation is

. . n+05—mn n—05—n 1 F;
PW,=n=Pn<W,<n]=o (T) — @ (»—f%) — 20 (2 ﬁ) —1 (3

The comparison of the exact caleulation and the approximation are given in the following table.

PWa=n] |n=1 n=4 n=16 n=64
exact 0.3679 0.1954 0.0992 0.0498 (4]
approximate | 0.35829 0.1974 0.0095 0.0495




Problem 6.8.2 Solution

For an N [it, 0?] random variable X, we can write
PX z2e|=P[(X —p)fe=(c—p)/o]=P|Z = (e—p)/a] (1)

Since Z is N[0, 1], we can apply the result of Problem 6.8.1 with ¢ replaced by (¢ — p)/o. This
vields )
PX >c|=P[Z = (c—pu)la] = g~ le—)?/207 (2)

Problem 6.8.5 Solution
Let W, =X; + - -+ X,,. Since M,(X) = W, /n, we can write

P M, (X)=¢c|= P[W, = nc (1)
Since o, (8) = (ox(s))", applying the Chernoff bound to W), yields

PW, =ne < n}j'ﬁi e o (8) = ﬂlilﬂl (E_”@X(HJ)H (2)
&= =

For y = 0, 4" is a nondecreasing function of . This implies that the value of s that minimizes
e %oy (s) also minimizes (e %@y (s))". Hence

PM;(X)>¢|=P[W, 2ne] < (min E:_S':;I;X{S])n (3)

a0



