Problem 5.1.2 Solution

Whether a computer has feature i is a Bernoulli trial with success probability $p_i = 2^{-i}$. Given that n computers were sold, the number of computers sold with feature i has the binomial PMF

$$P_{N_i}(n_i) = \begin{cases} \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n - n_i} & n_i = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Since a computer has feature i with probability p_i independent of whether any other feature is on the computer, the number N_i of computers with feature i is independent of the number of computers with any other features. That is, N_1, \ldots, N_4 are mutually independent and have joint PMF

$$P_{N_1,...,N_4}(n_1,...,n_4) = P_{N_1}(n_1) P_{N_2}(n_2) P_{N_3}(n_3) P_{N_4}(n_4)$$
(2)

(a) For
$$n = 3$$
, $P_{N_1, N_2, N_3, N_4}(n_1, n_2, n_3, n_4) = \prod_{i=1}^4 P_{N_i}(n_i)$, where

$$P_{N_i}(n_i) = {3 \choose n_i} p_i^{n_i} (1-p_i)^{3-n_i}$$
 for $i = 1, 2, 3, 4$.

(b) For
$$n = 1$$
, $P_{no \ additional \ feature} = P_{N_1, N_2, N_3, N_4}(0, 0, 0, 0) = \frac{315}{1024}$.

(c) For
$$n = 1$$
, $P_{at \ least \ 3 \ additional \ features} = \sum_{\substack{o+p+q+r \geq 3 \\ o,p,q,r \in \{0,1\}}} P_{N_1,N_2,N_3,N_4}(o,p,q,r) = \frac{27}{1024}$.

Problem 5.2.1 Solution

This problem is very simple. In terms of the vector \mathbf{X} , the PDF is

$$f_{\mathbf{X}}(\mathbf{x}) = \begin{cases} 1 & 0 \le \mathbf{x} \le 1\\ 0 & \text{otherwise} \end{cases}$$
 (1)

However, just keep in mind that the inequalities $0 \le x$ and $x \le 1$ are vector inequalities that must hold for every component x_i .

Problem 5.3.2 Solution

$$\begin{split} P_{\mathbf{K}}\left(\mathbf{k}\right) &= (1-p)^{k_1-1} p (1-p)^{k_2-k_1-1} p (1-p)^{k_3-k_2-1} p \\ &= (1-p)^{k_3-3} p^3 \end{split} \qquad \qquad \text{for} \quad 0 < k_1 < k_2 < k_3 \end{split}$$

Problem 5.3.6 Solution

In Example 5.1, random variables N_1, \ldots, N_r have the multinomial distribution

$$P_{N_1,...,N_r}(n_1,...,n_r) = \binom{n}{n_1,...,n_r} p_1^{n_1} \cdots p_r^{n_r}$$
(1)

where n > r > 2.

(a) To evaluate the joint PMF of N_1 and N_2 , we define a new experiment with mutually exclusive events: s_1 , s_2 and "other" Let \hat{N} denote the number of trial outcomes that are "other". In this case, a trial is in the "other" category with probability $\hat{p} = 1 - p_1 - p_2$. The joint PMF of N_1 , N_2 , and \hat{N} is

$$P_{N_1,N_2,\hat{N}}(n_1,n_2,\hat{n}) = \frac{n!}{n_1!n_2!\hat{n}!} p_1^{n_1} p_2^{n_2} (1 - p_1 - p_2)^{\hat{n}} \quad n_1 + n_2 + \hat{n} = n$$
 (2)

Now we note that the following events are one in the same:

$$\{N_1 = n_1, N_2 = n_2\} = \{N_1 = n_1, N_2 = n_2, \hat{N} = n - n_1 - n_2\}$$
(3)

Hence, for non-negative integers n_1 and n_2 satisfying $n_1 + n_2 \le n$,

$$P_{N_1,N_2}(n_1,n_2) = P_{N_1,N_2,\hat{N}}(n_1,n_2,n-n_1-n_2)$$
(4)

$$= \frac{n!}{n_1! n_2! (n - n_1 - n_2)!} p_1^{n_1} p_2^{n_2} (1 - p_1 - p_2)^{n - n_1 - n_2}$$
 (5)

(b) We could find the PMF of T_i by summing the joint PMF $P_{N_1,\dots,N_r}(n_1,\dots,n_r)$. However, it is easier to start from first principles. Suppose we say a success occurs if the outcome of the trial is in the set $\{s_1,s_2,\dots,s_i\}$ and otherwise a failure occurs. In this case, the success probability is $q_i=p_1+\dots+p_i$ and T_i is the number of successes in n trials. Thus, T_i has the binomial PMF

$$P_{T_i}(t) = \begin{cases} \binom{n}{t} q_i^t (1 - q_i)^{n-t} & t = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$
 (6)

(c) The joint PMF of T_1 and T_2 satisfies

$$P_{T_1,T_2}(t_1,t_2) = P\left[N_1 = t_1, N_1 + N_2 = t_2\right] \tag{7}$$

$$= P[N_1 = t_1, N_2 = t_2 - t_1]$$
(8)

$$= P_{N_1,N_2}(t_1,t_2-t_1) \tag{9}$$

By the result of part (a),

$$P_{T_1,T_2}(t_1,t_2) = \frac{n!}{t_1!(t_2-t_1)!(n-t_2)!} p_1^{t_1} p_2^{t_2-t_1} (1-p_1-p_2)^{n-t_2} \qquad 0 \le t_1 \le t_2 \le n$$
 (10)

Problem 5.4.3 Solution

We will use the PDF

$$f_{\mathbf{X}}(\mathbf{x}) = \begin{cases} 1 & 0 \le x_i \le 1, i = 1, 2, 3, 4 \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

to find the marginal PDFs $f_{X_i}(x_i)$. In particular, for $0 \le x_1 \le 1$,

$$f_{X_1}(x_1) = \int_0^1 \int_0^1 \int_0^1 f_{\mathbf{X}}(\mathbf{x}) dx_2 dx_3 dx_4$$
 (2)

$$= \left(\int_0^1 dx_2\right) \left(\int_0^1 dx_3\right) \left(\int_0^1 dx_4\right) = 1.$$
 (3)

Thus,

$$f_{X_1}(x_1) = \begin{cases} 1 & 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$
 (4)

Following similar steps, one can show that

$$f_{X_1}(x) = f_{X_2}(x) = f_{X_3}(x) = f_{X_4}(x) = \begin{cases} 1 & 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$
 (5)

Thus

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x) f_{X_2}(x) f_{X_3}(x) f_{X_4}(x).$$
 (6)

We conclude that X_1 , X_2 , X_3 and X_4 are independent.

Problem 5.4.5 Solution

This problem can be solved without any real math. Some thought should convince you that for any $x_i > 0$, $f_{X_i}(x_i) > 0$. Thus, $f_{X_1}(10) > 0$, $f_{X_2}(9) > 0$, and $f_{X_3}(8) > 0$. Thus $f_{X_1}(10)f_{X_2}(9)f_{X_3}(8) > 0$. However, from the definition of the joint PDF

$$f_{X_1,X_2,X_3}(10,9,8) = 0 \neq f_{X_1}(10) f_{X_2}(9) f_{X_3}(8)$$
. (1)

It follows that X_1 , X_2 and X_3 are dependent. Readers who find this quick answer dissatisfying are invited to confirm this conclusions by solving Problem 5.4.6 for the exact expressions for the marginal PDFs $f_{X_1}(x_1)$, $f_{X_2}(x_2)$, and $f_{X_3}(x_3)$.

Problem 5.5.1 Solution

For discrete random vectors, it is true in general that

$$P_{\mathbf{Y}}(\mathbf{y}) = P[\mathbf{Y} = \mathbf{y}] = P[\mathbf{A}\mathbf{X} + \mathbf{b} = \mathbf{y}] = P[\mathbf{A}\mathbf{X} = \mathbf{y} - \mathbf{b}]. \tag{1}$$

For an arbitrary matrix A, the system of equations Ax = y - b may have no solutions (if the columns of A do not span the vector space), multiple solutions (if the columns of A are linearly dependent), or, when A is invertible, exactly one solution. In the invertible case,

$$P_{\mathbf{Y}}(\mathbf{y}) = P\left[\mathbf{A}\mathbf{X} = \mathbf{y} - \mathbf{b}\right] = P\left[\mathbf{X} = \mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})\right] = P_{\mathbf{X}}\left(\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})\right). \tag{2}$$

As an aside, we note that when $\mathbf{A}\mathbf{x} = \mathbf{y} - \mathbf{b}$ has multiple solutions, we would need to do some bookkeeping to add up the probabilities $P_{\mathbf{X}}(\mathbf{x})$ for all vectors \mathbf{x} satisfying $\mathbf{A}\mathbf{x} = \mathbf{y} - \mathbf{b}$. This can get disagreeably complicated.

Problem 5.5.6 Solution

Let A denote the event $X_n = \max(X_1, \dots, X_n)$. We can find P[A] by conditioning on the value of X_n .

$$P[A] = P[X_1 \le X_n, X_2 \le X_n, \cdots, X_{n-1} \le X_n]$$
(1)

$$= \int_{-\infty}^{\infty} P[X_1 < X_n, X_2 < X_n, \cdots, X_{n-1} < X_n | X_n = x] f_{X_n}(x) dx$$
 (2)

$$= \int_{-\infty}^{\infty} P[X_1 < x, X_2 < x, \cdots, X_{n-1} < x | X_n = x] f_X(x) dx$$
 (3)

Since X_1, \ldots, X_{n-1} are independent of X_n ,

$$P[A] = \int_{-\infty}^{\infty} P[X_1 < x, X_2 < x, \cdots, X_{n-1} < x] f_X(x) dx.$$
 (4)

Since X_1, \ldots, X_{n-1} are iid,

$$P[A] = \int_{-\infty}^{\infty} P[X_1 \le x] P[X_2 \le x] \cdots P[X_{n-1} \le x] f_X(x) dx$$
 (5)

$$= \int_{-\infty}^{\infty} \left[F_X(x) \right]^{n-1} f_X(x) \ dx = \frac{1}{n} \left[F_X(x) \right]^n \Big|_{-\infty}^{\infty} = \frac{1}{n} (1 - 0)$$
 (6)

Not surprisingly, since the X_i are identical, symmetry would suggest that X_n is as likely as any of the other X_i to be the largest. Hence P[A] = 1/n should not be surprising.

Problem 5.6.4 Solution

Inspection of the vector PDF $f_{\mathbf{X}}(\mathbf{x})$ will show that X_1 , X_2 , X_3 , and X_4 are iid uniform (0,1) random variables. That is,

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x_1) f_{X_2}(x_2) f_{X_3}(x_3) f_{X_4}(x_4)$$
 (1)

where each X_i has the uniform (0,1) PDF

$$f_{X_i}(x) = \begin{cases} 1 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$
 (2)

It follows that for each i, $E[X_i] = 1/2$, $E[X_i^2] = 1/3$ and $Var[X_i] = 1/12$. In addition, X_i and X_i have correlation

$$E[X_i X_j] = E[X_i] E[X_j] = 1/4.$$
 (3)

and covariance $\text{Cov}[X_i, X_j] = 0$ for $i \neq j$ since independent random variables always have zero covariance.

(a) The expected value vector is

$$E[\mathbf{X}] = \begin{bmatrix} E[X_1] & E[X_2] & E[X_3] & E[X_4] \end{bmatrix}' = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \end{bmatrix}'.$$
 (4)

(b) The correlation matrix is

$$\mathbf{R}_{X} = E\left[\mathbf{X}\mathbf{X}'\right] = \begin{bmatrix} E\left[X_{1}^{2}\right] & E\left[X_{1}X_{2}\right] & E\left[X_{1}X_{3}\right] & E\left[X_{1}X_{4}\right] \\ E\left[X_{2}X_{1}\right] & E\left[X_{2}^{2}\right] & E\left[X_{2}X_{3}\right] & E\left[X_{2}X_{4}\right] \\ E\left[X_{3}X_{1}\right] & E\left[X_{3}X_{2}\right] & E\left[X_{3}^{2}\right] & E\left[X_{3}X_{4}\right] \\ E\left[X_{4}X_{1}\right] & E\left[X_{4}X_{2}\right] & E\left[X_{4}X_{3}\right] & E\left[X_{4}^{2}\right] \end{bmatrix}$$

$$= \begin{bmatrix} 1/3 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/3 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/3 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/3 \end{bmatrix}$$

$$(5)$$

(c) The covariance matrix for X is the diagonal matrix

The matrix for
$$\mathbf{X}$$
 is the diagonal matrix
$$\mathbf{C}_{X} = \begin{bmatrix}
\operatorname{Var}[X_{1}] & \operatorname{Cov}[X_{1}, X_{2}] & \operatorname{Cov}[X_{1}, X_{3}] & \operatorname{Cov}[X_{1}, X_{4}] \\
\operatorname{Cov}[X_{2}, X_{1}] & \operatorname{Var}[X_{2}] & \operatorname{Cov}[X_{2}, X_{3}] & \operatorname{Cov}[X_{2}, X_{4}] \\
\operatorname{Cov}[X_{3}, X_{1}] & \operatorname{Cov}[X_{3}, X_{2}] & \operatorname{Var}[X_{3}] & \operatorname{Cov}[X_{3}, X_{4}] \\
\operatorname{Cov}[X_{4}, X_{1}] & \operatorname{Cov}[X_{4}, X_{2}] & \operatorname{Cov}[X_{4}, X_{3}] & \operatorname{Var}[X_{4}]
\end{bmatrix}$$

$$= \begin{bmatrix}
1/12 & 0 & 0 & 0 \\
0 & 1/12 & 0 & 0 \\
0 & 0 & 1/12 & 0 \\
0 & 0 & 0 & 1/12
\end{bmatrix}$$
(8)

$$= \begin{bmatrix} 1/12 & 0 & 0 & 0 \\ 0 & 1/12 & 0 & 0 \\ 0 & 0 & 1/12 & 0 \\ 0 & 0 & 0 & 1/12 \end{bmatrix}$$
 (8)

Note that its easy to verify that $C_X = R_X - \mu_X \mu_X'$.

Problem 5.6.9 Solution

Given an arbitrary random vector X, we can define $Y = X - \mu_X$ so that

$$\mathbf{C}_{\mathbf{X}} = E\left[(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})' \right] = E\left[\mathbf{Y}\mathbf{Y}' \right] = \mathbf{R}_{\mathbf{Y}}. \tag{1}$$

It follows that the covariance matrix C_X is positive semi-definite if and only if the correlation matrix $\mathbf{R}_{\mathbf{Y}}$ is positive semi-definite. Thus, it is sufficient to show that every correlation matrix, whether it is denoted $\mathbf{R}_{\mathbf{Y}}$ or $\mathbf{R}_{\mathbf{X}}$, is positive semi-definite.

To show a correlation matrix $\mathbf{R}_{\mathbf{X}}$ is positive semi-definite, we write

$$\mathbf{a}'\mathbf{R}_{\mathbf{X}}\mathbf{a} = \mathbf{a}'E\left[\mathbf{X}\mathbf{X}'\right]\mathbf{a} = E\left[\mathbf{a}'\mathbf{X}\mathbf{X}'\mathbf{a}\right] = E\left[(\mathbf{a}'\mathbf{X})(\mathbf{X}'\mathbf{a})\right] = E\left[(\mathbf{a}'\mathbf{X})^{2}\right]. \tag{2}$$

We note that $W = \mathbf{a}'\mathbf{X}$ is a random variable. Since $E[W^2] \ge 0$ for any random variable W,

$$\mathbf{a}'\mathbf{R}_{\mathbf{X}}\mathbf{a} = E\left[W^2\right] \ge 0. \tag{3}$$

Problem 5.7.6 Solution

(a) From Theorem 5.13, Y has covariance matrix

$$C_{\mathbf{Y}} = \mathbf{Q}C_{\mathbf{X}}\mathbf{Q}' \tag{1}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
(2)

$$= \begin{bmatrix} \sigma_1^2 \cos^2 \theta + \sigma_2^2 \sin^2 \theta & (\sigma_1^2 - \sigma_2^2) \sin \theta \cos \theta \\ (\sigma_1^2 - \sigma_2^2) \sin \theta \cos \theta & \sigma_1^2 \sin^2 \theta + \sigma_2^2 \cos^2 \theta \end{bmatrix}.$$
 (3)

We conclude that Y_1 and Y_2 have covariance

$$Cov [Y_1, Y_2] = C_{\mathbf{Y}}(1, 2) = (\sigma_1^2 - \sigma_2^2) \sin \theta \cos \theta.$$
(4)

Since Y_1 and Y_2 are jointly Gaussian, they are independent if and only if $Cov[Y_1, Y_2] = 0$. Thus, Y_1 and Y_2 are independent for all θ if and only if $\sigma_1^2 = \sigma_2^2$. In this case, when the joint PDF $f_{\mathbf{X}}(\mathbf{x})$ is symmetric in x_1 and x_2 . In terms of polar coordinates, the PDF $f_{\mathbf{X}}(\mathbf{x}) = f_{X_1,X_2}(x_1,x_2)$ depends on $r = \sqrt{x_1^2 + x_2^2}$ but for a given r, is constant for all $\phi = \tan^{-1}(x_2/x_1)$. The transformation of \mathbf{X} to \mathbf{Y} is just a rotation of the coordinate system by θ preserves this circular symmetry.

- (b) If $\sigma_2^2 > \sigma_1^2$, then Y_1 and Y_2 are independent if and only if $\sin \theta \cos \theta = 0$. This occurs in the following cases:
 - $\theta = 0$: $Y_1 = X_1$ and $Y_2 = X_2$
 - $\theta = \pi/2$: $Y_1 = -X_2$ and $Y_2 = -X_1$
 - $\theta = \pi$: $Y_1 = -X_1$ and $Y_2 = -X_2$
 - $\theta = -\pi/2$: $Y_1 = X_2$ and $Y_2 = X_1$

In all four cases, Y_1 and Y_2 are just relabeled versions, possibly with sign changes, of X_1 and X_2 . In these cases, Y_1 and Y_2 are independent because X_1 and X_2 are independent. For other values of θ , each Y_i is a linear combination of both X_1 and X_2 . This mixing results in correlation between Y_1 and Y_2 .