Problem 3.1.3 Solution
In this problem, the CDF of W is

0 w< =5
(w+5)/8 —-5<Lw< -3
Fy (w) =< 1/4 -3<w<3 (1)
1/4+3(w—-3)/8 3<w<bH
1 w > 5.

Each question can be answered directly from this CDF.
1 3

(a)
PW <4 =Fy((4)=1/4+3/8=5/8. (2)

(b)
P[-2<W <2]=Fy((2)—Fw(-2)=1/4—-1/4=0. (3)

(c)
PW>0=1-P[W<0/=1-Fy(0)=3/4 (4)

(d) By inspection of Fyy(w), we observe that P[W < a] = Fy(a) = 1/2 for a in the range
3 < a < 5. In this range,
Fy(a) =1/4+3(a—3)/8=1/2 (5)
This implies a = 11/3.

Problem 3.2.3 Solution
We find the PDF by taking the derivative of Fyr(u) on each piece that Fir(u) is defined. The CDF
and corresponding PDF of U are

0 u< —5H 0 u < —hH
(u+5)/8 —Hh<u< -3 1/8 —Hh<u< -3
Fy(u) = 1/4 —3<u<3 fulu)y=4 0 —3<u<3 (1)
1/443(u—3)/8 3<u<hb 3/8 3<u<h
1 u = b, 0 u = 5.

Problem 3.2.4 Solution
For x < 0, Fx(z) = 0. For « > 0,

T
P (@)= [ 1) dy M
:f azye_“2y2/2dy (2)
0
_ —a?y? /2 v _ —a%x?/2
= »

A complete expression for the CDF of X is

0 <0
Fx(:{:):{ 1_€—a2m2/2 >0 (4)



Problem 3.3.2 Solution

(a) Since the PDF is uniform over [1,9]

149 . _(9-1)* 16
E[X]——2 =5 Var [X] = 2 3 (1)
(b) Define h(X) =1/v/X then
W(E[X]) =1/V5 (2)
9 =172
E[h(X)]:] 3 de =1/2 (3)
1
Problem 3.3.8 Solution
The Pareto (o, i) random variable has PDF
_ [ @/ (/™Y >
Ix (@) = { 0 otherwise ™)

The nth moment is

00 oy —(o+1) oo oy —(a—n41)
E[X"] = / o (i) de = " f - (f) da 2)
PN PRV
With the variable substitution y = /1, we obtain
oo
E [Xn] _ a”_n/ y—((r—-ﬂ+l}dy (3)
1
We see that E[X™"] < oo if and only if @« —n+ 1 > 1, or, equivalently, n < . In this case,
E[Xn} _ Ly—(ﬁ—n+l)+l [ (4)
—(ae—n+1)+1 y=1
P 1 Y= T
B a(i”nT e N cff n ®)
y=1

Problem 3.4.1 Solution
The reflected power Y has an exponential (A = 1/Fy) PDF. From Theorem 3.8, E[Y] = Fy. The
probability that an aircraft is correctly identified is
=1
PY > By =/ —e WP gy =1, (1)
&) PO

Fortunately, real radar systems offer better performance.



Problem 3.4.9 Solution
Let X denote the holding time of a call. The PDF of X is

e /T g
)= { {7 - (1)

otherwise

We will use C4(X) and Cp(X) to denote the cost of a call under the two plans. From the problem
statement, we note that C'4(X) = 10X so that E[C4(X)] = 10F[X]| = 107. On the other hand

Cp(X) =99 +10(X —20)" (2)

where y* =y if y > 0; otherwise y* = 0 for y < 0. Thus,

E[Cp(X)] = E [99+10(X —20)*] (3)
=99 + 10E [(X —20)"] (4)

=99 + 10E [(X —20)"|X < 20] P[X < 20]
+ 10E [(X —20)"|X > 20] P[X > 20] (5)

Given X <20, (X —20)" =0. Thus E[(X —20)"|X < 20] = 0 and
E[Cp(X)] =99+ 10E[(X — 20)|X > 20] P[X > 20] (6)
Finally, we observe that P[X > 20] = e~ 2%/7 and that
E[(X —20)|X >20] =7 (7)

since given X > 20, X —20 has a PDF identical to X by the memoryless property of the exponential
random variable. Thus,
E|[Cp(X)] =99 + 107207 (8)

Some numeric comparisons show that E[Cp(X)] < E[Ca(X)] if 7 > 12.34 minutes. That is, the
flat price for the first 20 minutes is a good deal only if your average phone call is sufficiently long.

Problem 3.4.11 Solution
For an Erlang (n, A) random variable X, the kth moment is

E[X"] =fo 2 fy () dt (1)
o0 /\n.l?n-'_k_l N (R-‘rk— 1)! &0 {\n+kxn+k—l A
— [ AT gy = 2
) Ty I A ey ;/0 n+k—1)1° df )
1

The above marked integral equals 1 since it is the integral of an Erlang PDF with parameters A
and n + k over all possible values. Hence,

J (n+k&—1)
B [xt] = Ne(n — 1)) ®)

This implies that the first and second moments are

_ n! _n
T =1 A

PIX) = iy = W

E[X]

It follows that the variance of X is n/\°.



Problem 3.4.14 Solution

(a) Since fx(x) = 0 and x = r over the entire integral, we can write

[:o:rfx(:c) d:nZ/;oorfx(z) dr = rP[X > 1] (1)
(b) We can write the expected value of X in the form
BX) = [Cafx @) dos [ty @) do (2)
Hence, ~ )
PPIX > 1] < [ 2fx (z) de = E[X] - fo ofx (2) du 3)

Allowing r to approach infinity vields
lim 7P [X > 7] < E[X]— lim / zfx (z)dv=E[X]|-F[X]=0 (4)
=00 r—0oC 0

Since rP[X =] = 0 for all » = 0, we must have lim, .o 7P[X > r] = 0.

(¢) We can use the integration by parts formula fu dv = uv — f vdu by defining v = 1 — Fx(x)
and dv = dx. This yields

|- @ldo= ot~ Fx @5+ [ afx @) do ©)
0 0
By applying part (a), we now observe that
x[l—Fy (2)]g°= lim r[1 = Fx (r)] = 0= lim rP[X > 7] (6)
o0 o0

By part (b), lim, .o 7P[X > 7] = 0 and this implies x[1 — Fx(x)]|;" = 0. Thus,

/DOO[I—F)((I?}]CI;I?=£w;rfx(;r) dr = E[X] (7)

Problem 3.5.4 Solution
Repeating Definition 3.11,

1 o
Qz) = \/—Q_ﬂ/ e 2 gy (1)
z
Making the substitution z = u/v/2, we have
1 K - ; | ( 7 )
z) = — e " dr = —erfc | — 2
o= [ et (2 )

Problem 3.5.5 Solution

Moving to Antarctica, we find that the temperature, T is still Gaussian but with variance 225. We
also know that with probability 1/2, T exceeds 10 degrees. First we would like to find the mean
temperature, and we do so by looking at the second fact.

10 — pup
P[T>10]=1—P[T§10}21—‘?(%)=1/2 (1)
5
By looking at the table we find that if ®(I') = 1/2, then I' = 0. Therefore,
10— u
o (L FT) ) (2)
15

implies that (10 — pr)/15 = 0 or pp = 10. Now we have a Gaussian T with mean 10 and standard



deviation 15. So we are prepared to answer the following problems.

P[T>32]:l—P[T532]:1—¢>(321_510) (3)

=1-®(1.45) = 1 — 0.926 = 0.074 (4)

(
=®(—2/3)=1- ®(2/3) (
=1—®(0.67) =1 —0.749 = 0.251 (7)

PIT >60=1-P[T <60] =1— Fr(60) (
=1—¢(60;E)10) =1—®(10/3) (
=Q(3.33) =4.34-1071 (10)

Problem 3.5.10 Solution
This problem is mostly calculus and only a little probability. From the problem statement, the
SNR Y is an exponential (1/v) random variable with PDF

—y/
5% (y) = { [()]'M)e . gt.feg;vise. (1)

Thus, from the problem statement, the BER is
— S 0o y
Po=BIRM)= [ QWEN ) di= [~ QW) e dy @)

% 0

Like most integrals with exponential factors, its a good idea to try integration by parts. Before

doing so, we recall that if X is a Gaussian (0, 1) random variable with CDF Fy (x), then

Qz) =1- Fx (). (3)
It follows that Q(x) has derivative
i dQ(x dFx (x a2
Q=T =T (g = e @

3 3 . b b b
To solve the integral, we use the integration by parts formula [ uwdv = wv|’ — [ vdu, where
Ja a Ja

u=Q(v/2y) dv = % Y/ dy (5)
du=Q'( Qy)L — e v = —e~Y/7 6)
V2 2,/my
From integration by parts, it follows that

P o_ [~ M| [T L s
P.=wv —/ vdu = — e Y _/ —e Y M g, 7
©- Qwemen|7- [ — y (7)

1 = . .
= =0 =1/2,-y/7 g

04 Q(0)e 2ﬁ/0 y e dy (8)

where ¥ = v/(1 + 7). Next, recalling that Q(0) = 1/2 and making the substitution t = y/5, we

obtain
5 _ 1 1 /5 % 4
P,= 5”3 7"/0 t e “dt 9)

From Math Fact B.11, we see that the remaining integral is the I'(z) function evaluated z = 1/2.
Since I'(1/2) = /,

1 1

Pe=%—§\/§F(1/2)=§[l_ﬁ]=%[1_ L (10)



Problem 3.6.5 Solution
The PMF of a geometric random variable with mean 1/p is

[ p(l=p)t z=1,2,...
Px (z) = { 0 otherwise (1)
The corresponding PDF is
fx @) = pdla — 1) +p(1 — p)d(w — 2) +--- (2)
=> p(1—p) oz —j) (3)
j=1

Problem 3.6.6 Solution

(a) Since the conversation time cannot be negative, we know that Fyy(w) = 0 for w < 0. The
conversation time W is zero iff either the phone is busy, no one answers, or if the conversation
time X of a completed call is zero. Let A be the event that the call is answered. Note that
the event A implies W = 0. For w > 0,

Fy (w) = P[A°] + P[A] Fyyja (w) = (1/2) + (1/2) Fx (w) (1)
Thus the complete CDF of W is

0 w < 0
Fiw (w) = { 1/2+ (1/2)Fx (w) w>0 @)
(b) By taking the derivative of Fyy (w), the PDF of W is

fw (w) = { (1/2)é(w) + (1/2) fx (w) 5

0 otherwise

Next, we keep in mind that since X must be nonnegative, fx(x) = 0 for x < 0. Hence,
Jw (w) = (1/2)8(w) + (1/2) fx (w) (4)

(¢) From the PDF fy-(w), calculating the moments is straightforward.

EW)= [~ whv () do=01/2) [ wix(w) do=BX]/2 (5)
The second moment is
E[wW? = /_ Z w? fiy (w) dw = (1/2) /_z w?fx (w) dw = E [X?] /2 (6)
The variance of W is
Var[W] = E [W?] — (E[W))? = E [X*] /2— (E [X] /2)* (7)

= (1/2) Var[X] + (B [X])* /4 (8)



Problem 3.7.5 Solution
Before solving for the PDF, it is helpful to have a sketch of the function X = —In(1 — U).

(a) From the sketch, we observe that X will be nonnegative. Hence Fy(x) = 0 for & < 0. Since
[/ has a uniform distribution on [0,1], for 0 < u < 1, P[U < u] = u. We use this fact to find
the CDF of X. For a = 0,

Fx(z)=P[-In(1-U)<a]=P[1-Uze"|=P[U<1-¢"] (1)
Forx>0,0<1—e* <1 andso
Fx(z)=Fy(l-e")=1-¢" (2)

The complete CDF can be written as

0 r <0
FX(:C)_{I_C—:; x>0 (3)
(b) By taking the derivative, the PDF is
e =0 '
Fx (@) = { 0  otherwise (4)

Thus, X has an exponential PDF. In fact, since most computer languages provide uniform
[0,1] random numbers, the procedure outlined in this problem provides a way to generate
exponential random variables from uniform random variables.

(¢) Since X is an exponential random variable with parameter a =1, E[X] = 1.

Problem 3.7.8 Solution
Let X denote the position of the pointer and Y denote the area within the arc defined by the
stopping position of the pointer.

(a) If the disc has radius 7, then the area of the dise is 7. Since the circumference of the disc
is 1 and X is measured around the circumference, ¥ = 7r? X. For example, when X = 1, the
shaded area is the whole disc and Y = 772, Similarly, if X = 1/2, then ¥ = 772 /2 is half the
area of the dise. Since the disc has circumference 1, r = 1/(27) and

. X

o 2y
V=mrX = gy (1)

(b) The CDF of Y can be expressed as
X
B ()= PV <3l = P 3 <u] = PLX < dm] = Fi (4my )
Therefore the CDF is

0 y <0

Fy(y)=X 4my 0<y< & (3)
1 y>4

(c) By taking the derivative of the CDF, the PDF of YV is

dr 0<y< 4=

fr (y) = { 0  otherwise W

(d) The expected value of Y is E[Y] = EJU('”) dry dy = 1/(8x).



Problem 3.7.13 Solution
If X has a uniform distribution from 0 to 1 then the PDF and corresponding CDF of X are

0 <0
1 0<z<1
Ix (:r):{ 0 otherwise Ex(z)=q ez Osesl (1)
T 1 z>1
For b — a > 0, we can find the CDF of the function Y =a+ (b —a)X
Fy(y)=P[Y <yl =Plat (b-a)X <y (2)
y—a
=P < .
I [X_bfal (3)
y—a y—a
— — 4
FX(bfa) b—a “)
Therefore the CDF of V' is
0 y<a
Fy(y) =9 §= ae<y<b (5)
1 y=>b

By differentiating with respect to y we arrive at the PDF

fy(y):{ 1/(b—a) a<xz<h

0 otherwise

which we recognize as the PDF of a uniform (a, ) random variable.

Problem 3.7.17 Solution

Understanding this claim may be harder than completing the proof. Since 0 < F(z) < 1, we know
that 0 < U < 1. This implies Fir(u) = 0 for w < 0 and Fyy(u) = 1 for u > 1. Moreover, since F'(x)
is an increasing function, we can write for 0 < u < 1,

Fy(u)y=P[F(X)<ul=P[X < F_l(u)] =Fy (F_l(u)) (1)
Since Fyx(x) = F(z), we have for 0 <u < 1,
Fy(u) = F(F Y (u)) =u (2)
Hence the complete CDF of U is
0 u<0
Fouy=4 u 0<u<l1 (3)
1 u=1

That is, U is a uniform [0, 1] random variable.



Problem 3.8.2 Solution
From Definition 3.6, the PDF of Y is

_ [ a/mes oy =0
) = { 0 otherwise (1)
(a) The event A has probability
2 . 5|2 :
P[A] =Py <2] = / (1/5)e ¥/ dy = —e ¥/° =1 e 20 (2)
0
From Definition 3.15, the conditional PDF of ¥ given A is
_ _J v /PlA] z€A
Frialy) = { 0 otherwise 3)
(1/5)e ¥/5/(1—e %) 0<y<2
- ‘ (4)
0 otherwise
(b) The conditional expected value of ¥ given A is
o0 1/5 2 /s
EVIAI= [~ ufva ) dy =0 [y ®)
Using the integration by parts formula [wdv = wv — [vdu with u = y and dv = e v/5 dy
yields
ByiA = —L5 _(_syeus|’ & /2 5ev/5 dy ©6)
1—e 2/ ' o Jo
_ 1/5 —2/5 —y/5 2
5—Te 2/°

s ®)



Problem 3.8.7 Solution

(a) Given that a person is healthy, X is a Gaussian (g = 90, ¢ = 20) random variable. Thus,

@220 _ L —(z-90)2/800 (1)

fxuf(??) = o2 20\/2—W

(b) Given the event H, we use the conditional PDF f x 1 () to calculate the required probabilities

P[T*|H| = P[X > 140|H] = P[X — 90 > 50|H] (2)
X —
_p { 2090 > 2.5|H} —1-®(25)=0.006  (3)
Similarly,
P[T7|H| = P[X < 110|H] = P[X — 90 < 20|H] (4)
=P [XQ_OQU < 1|H} =®(1) =0.841 (5)
(c) Using Bayes Theorem, we have
- P|T™|H| P [H] P[T~|H|P[H]
PIHT | = = 6
Kl P[T7] P|T-|D|P[D]+ P[T-|H| P|H| (©6)
In the denominator, we need to calculate
P[T"|D] = P[X <110|D] = P[X — 160 < —50|D] (7)
X — 160
—p|t "« .
r 0 S 1.25|D (8)
=®(—1.25) =1 — ¢(1.25) = 0.106 (9)
Thus,
- P[T~|H] P [H]
PH|IT™| = 10
[ | ] PT-|D|\P[D|+ P[T-|H]|P[H] (10)
[
0.841(0.9) — 0.986 (11)

~ 0.106(0.1) + 0.841(0.9)

(d) Since T—, T°, and T are mutually exclusive and collectively exhaustive,
P[T°|H) =1-P[T"|H] - P[TT|H] =1 - 0.841 — 0.006 = 0.153 (12)

We say that a test is a failure if the result is 79. Thus, given the event H, each test has
conditional failure probability of ¢ = 0.153, or success probability p = 1 — g = 0.847. Given
H, the number of trials N until a success is a geometric (p) random variable with PMF

Py (n) = { ((]1 )

n

“Ip n=1,2,...,
otherwise.

(13)



Problem 3.8.8 Solution

(a) The event B; that Y = A/2 4+ A occurs if and only if iA < X < (i + 1)A. In particular,
since X has the uniform (—r/2,1/2) PDF

1/r —r/2<z<r/2

fx (@)= { 0 otherwise, (1)
we observe that
(i+1)A | A
P[Bi]zj Sdr == (2)
iA r r
In addition, the conditional PDF of X given B; is
f (2) = Ix(z)/P[B] ze€bB; /A iA<a < (i4+1)A 3)
MBATTT 0 otherwise ~ | 0 otherwise

It follows that given B;, 7 = X — Y = X — A/2 —iA, which is a uniform (—A/2, A/2)
random variable. That is,

L[ 1/A —A2<z<Af2
Jzi, (2) = { 0 otherwise ()
(b) We observe that fzp, () is the same for every i. Thus, we can write
fz(z)= ZP [Bi] fziB, (2) = [z, () ZP [Bi]l = fz|B, () (5)
i i

Thus, Z is a uniform (—A/2, A/2) random variable. From the definition of a uniform (a, b)
random variable, Z has mean and variance

_ (A2 (-A2) _A?

E[Z]=0,  Var[Z] 12 12

(6)
Problem 3.8.9 Solution

For this problem, almost any non-uniform random variable X will yield a non-uniform random
variable Z. For example, suppose X has the “triangular” PDF

s 8z/r? 0<x<r/2
Fx ()= { 0 otherwise (1)
In this case, the event B; that Y =4A + A/2 occurs if and only if iA < X < (i +1)A. Thus
(i+1)A Q.. %
P[Bi] = / B e BEUO PO @)
ia r r
It follows that the conditional PDF of X given B; is
Ix(z) ; sy ALz < (i+1)A
o (x)={ PB r € B, _ | B’@avap =
lin B0 { 0 otherwise 0 otherwise 3)
Given event B;, Y =iA+ A/2, so that Z =X —Y = X —iA — A/2. This implies
2+HIA+A /2
; : =~ —=A2<z<A/2
fz1B; (2) = fxip, (: +i1A + A/2) = { i / = / (4)
0 otherwise

We observe that the PDF of Z depends on which event B; occurs. Moreover, fzp,(2) is non-uniform
for all B;.



Problem 3.9.7 Solution

First we need to build a uniform (—»/2,7/2) b-bit quantizer. The function uquantize does this.

function y=uquantize(r,b,x)
funiform (-r/2,r/2) b bit quantizer
n=2"b;

delta=r/n;

x=min(x, (r-delta/2)/2);
x=max(x,-(r-delta/2)/2);
y=(delta/2)+delta*floor(x/delta);

Note that if |z| > /2, then x is truncated so that the quantizer output has maximum amplitude.
Next, we generate Gaussian samples, quantize them and record the errors:

function stdev=quantizegauss(r,b,m)
x=gaussrv(0,1,m);
x=x((x<=r/2)&(x>=-r/2));
y=uquantize(r,b,x);

Z=x-Y;

hist(z,100);

stdev=sqrt (sum(z. 2)/length(z));

For a Gaussian random variable X, P[|X| > r/2] > 0 for any value of r. When we generate enough
Gaussian samples, we will always see some quantization errors due to the finite (—r/2,7/2) range.
To foeus our attention on the effect of b bit quantization, quantizegauss.m eliminates Gaussian
samples outside the range (—r/2,7/2). Here are outputs of quantizegauss for b = 1,2, 3 bits.

15000 15000 15000
10000 10000 10000
5000 5000 5000
0 0 0

-2 0 2 -1 0 1 —0.5 0 0.5

It is obvious that for b = 1 bit quantization, the error is decidely not uniform. However, it appears
that the error is uniform for b = 2 and b = 3. You can verify that uniform errors is a reasonable
model for larger values of b.



