Q1

(a) $P_{x}(x)=p(1-p)^{x-1}, x=1,2,3, \ldots$

$$
E[X]=\sum_{x=1}^{\infty} x p(1-p)^{x-1}=\frac{1}{p}
$$

pf: Let

$$
\begin{aligned}
& S=p+2 p(1-p)^{1}+3 p(1-p)^{2}+\ldots \\
& (1-p) S=p(1-p)+2 p(1-p)^{2}+\ldots
\end{aligned}
$$

Subtracting this two equations, we have $p S=\frac{p}{1-(1-p)}=1, S=\frac{1}{p}$.

$$
E\left[X^{2}\right]=\sum_{x=1}^{\infty} x^{2} p(1-p)^{x-1}=\frac{2-p}{p^{2}}
$$

pf: Let

$$
\begin{gathered}
H=p+4 p(1-p)+9 p(1-p)^{2}+\ldots \\
(1-p) H=p(1-p)+4 p(1-p)^{2}+\ldots
\end{gathered}
$$

so

$$
\begin{gathered}
p H=p+3 p(1-p)+5 p(1-p)^{2}+\ldots \\
(1-p) p H=p(1-p)+3 p(1-p)^{2}+\ldots
\end{gathered}
$$

then $p p H=p+2 p(1-p)+2 p(1-p)^{2}+\ldots=p+\frac{2 p(1-p)}{1-(1-p)}$ finally we got $H=\frac{2-p}{p^{2}}$. So, $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=\frac{1-p}{p^{2}}$.
(b) Given $P_{x}(x)=C_{x}^{n} p^{x}(1-p)^{n-x}$ and $\sum_{x=0}^{n} \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}=1$.

$$
\begin{aligned}
E[X] & =\sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \ldots \ldots(x=0 \text { can be neglected }) \\
& =n p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}=n p \cdot 1=n p
\end{aligned}
$$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{x=0}^{n} x^{2} \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}=\sum_{x=1}^{n} x^{2} \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n}(1+x-1) \frac{(n-1)!n}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} \frac{(n-1)!n}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x}+\sum_{x=1}^{n}(x-1) \frac{(n-1)!n}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}+\sum_{x=2}^{n}(x-1) \frac{(n-1)!n}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n p+\sum_{x=2}^{n} \frac{(n-2)!n(n-1)}{(x-2)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n p+p^{2} n(n-1) \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2}(1-p)^{n-x} \\
& =n p+p^{2} n(n-1) \cdot 1 .
\end{aligned}
$$

So, $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=n p(1-p)$.
(c) Given $P_{x}(x)=C_{k-1}^{x-1} p^{k}(1-p)^{x-k}$ and $\sum_{x=k}^{\infty} \frac{(x-1)!}{(k-1)!(x-k)!} p^{k}(1-p)^{x-k}=1$

$$
\begin{aligned}
& E[X]=\sum_{x=k}^{\infty} x \frac{(x-1)!}{(k-1)!(x-k)!} p^{k}(1-p)^{x-k}=\frac{k}{p} \sum_{x=k}^{\infty} \frac{x!}{k!(x-k)!} p^{k+1}(1-p)^{x-k}=\frac{k}{p} . \\
& E\left[X^{2}\right]=\sum_{x=k}^{\infty} x^{2} \frac{(x-1)!}{(k-1)!(x-k)!} p^{k}(1-p)^{x-k} \\
& =\sum_{x=k}^{\infty}(x+1) \frac{x!}{(k-1)!(x-k)!} p^{k}(1-p)^{x-k}-\sum_{x=k}^{\infty} \frac{x!}{(k-1)!(x-k)!} p^{k}(1-p)^{x-k} \\
& =\sum_{x=k}^{\infty} \frac{(x+1)!}{(k-1)!(x-k)!} p^{k}(1-p)^{x-k}-\sum_{x=k}^{\infty} \frac{x!}{(k-1)!(x-k)!} p^{k}(1-p)(\text { the latter is } E[X]) \\
& =\frac{k(k+1)}{p^{2}} \sum_{x=k}^{\infty} \frac{(x+1)!}{(k+1)!(x-k)!} p^{k+2}(1-p)^{x-k}-\frac{k}{p}=\frac{k(k+1)}{p^{2}} \cdot 1-\frac{k}{p} .
\end{aligned}
$$

So, $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=\frac{k(1-p)}{p^{2}}$.
(d) Given $P_{x}(x)=\frac{\alpha^{x} e^{-\alpha}}{x!}, x=0,1,2, \ldots \quad$ and $\sum_{x=0}^{\infty} \frac{\alpha^{x} e^{-\alpha}}{x!}=1$.

$$
E[X]=\sum_{x=0}^{\infty} x \frac{\alpha^{x} e^{-\alpha}}{x!}=\sum_{x=1}^{\infty} x \frac{\alpha^{x} e^{-\alpha}}{x!}=\alpha \sum_{x=1}^{\infty} \frac{\alpha^{x-1} e^{-\alpha}}{(x-1)!}=\alpha
$$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{x=0}^{\infty} x^{2} \frac{\alpha^{x} e^{-\alpha}}{x!}=\sum_{x=1}^{\infty} x^{2} \frac{\alpha^{x} e^{-\alpha}}{x!} \\
& =\sum_{x=1}^{\infty}(1+x-1) \frac{\alpha^{x} e^{-\alpha}}{(x-1)!}=\sum_{x=1}^{\infty} \frac{\alpha^{x} e^{-\alpha}}{(x-1)!}+\sum_{x=1}^{\infty}(x-1) \frac{\alpha^{x} e^{-\alpha}}{(x-1)!} \\
& =E[X]+\sum_{x=2}^{\infty}(x-1) \frac{\alpha^{x} e^{-\alpha}}{(x-1)!} \\
& =E[X]+\alpha^{2} \sum_{x=2}^{\infty} \frac{\alpha^{x-2} e^{-\alpha}}{(x-2)!}=\alpha+\alpha^{2}
\end{aligned}
$$

So, $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=\alpha$.
Q2
(a) The pmf of N is given by $p_{N}(N=n)=(1-p)^{n} p$.
(b)

$$
\begin{aligned}
E[N] & =\sum_{n=0}^{\infty} n p(1-p)^{n} \\
& =p\left(\sum_{n=0}^{\infty}(n+1)(1-p)^{n}-\sum_{n=0}^{\infty}(1-p)^{n}\right) \\
& =p\left(-\frac{d}{d p}\left(\sum_{n=0}^{\infty}(1-p)^{n+1}\right)-\sum_{n=0}^{\infty}(1-p)^{n}\right) \\
& =p\left(-\frac{d}{d p}\left(\frac{1}{p}-1\right)-\frac{1}{p}\right) \\
& =p\left(\frac{1}{p^{2}}-\frac{1}{p}\right)=\frac{1}{p}-1=100-1=99
\end{aligned}
$$

(c) The appropriate p should satisfy the following inequality

$$
\sum_{n=0}^{999} p(1-p)^{n}=1-(1-p)^{1000} \leq 0.01
$$

Thus, $1-\sqrt[1000]{0.99} \geq p$.

Q3

(a) The pmf of N is $p(x)=p(1-p)^{(x-1)}$ for $x=1,2, \ldots$, so the conditional probability is

$$
\begin{aligned}
P[N & =k \mid N \leq m]=\frac{P[N \leq m, N=k]}{P[N \leq m]} \\
& =\frac{P[N=k]}{P[N \leq m]}=\frac{p(1-p)^{k-1}}{P[N \leq m]} \\
& =\frac{p(1-p)^{k-1}}{\sum_{n=1}^{m} p(1-p)^{(n-1)}}=\frac{p(1-p)^{k-1}}{1-(1-p)^{m}}
\end{aligned}
$$

when $k \leq m$ and zero when $k>m$. Thus, the answer is $\left\{\begin{array}{c}\frac{p(1-p)^{k-1}}{1-(1-p)^{m}}, k \leq m \\ 0, \text { otherwise }\end{array}\right.$.
(b) The probability is $\sum_{i=0}^{\infty} p(1-p)^{2 i+1}=\frac{1-p}{2-p}$.

Q4
$p(k)=C_{k}^{12}\left(\frac{1}{12}\right)^{k}\left(\frac{11}{12}\right)^{12-k}$. By matlab, we got $p(0)=0.35, p(1)=0.38, p(2)=0.19, p(3)=$ $0.058, p(4)=0.012, \ldots$, and found that accumulative pmf from 0 to 4 is 0.99 , ie, $\sum_{k=5}^{12} p(k)$ is less than 1%. So, once the manufacturer charges no less than $\$ 130$, which is equal to $\$ 50+4 * \$ 20$ (4 times reparations), he will lose money with probability 1% even less. Average cost per player is $50+$ [expectation of reparation fee] expectation of reparation fee $=$ $\sum_{k=0}^{12} 20 k C_{k}^{12}\left(\frac{1}{12}\right)^{k}\left(\frac{11}{12}\right)^{12-k}=20 \cdot 12 \cdot \frac{1}{12}=20$, so average cost is $\$ 70$ per player.

Q5

(a) $(1-0.001)^{10000}$.
(b) If the broken ones is not replaced, the probability that a disk does not fail in two day is $(1-0.001)^{2}=0.999^{2}$. Thus, the probability that there are fewer than 10 failures in two days is given by

$$
\sum_{k=0}^{9}\binom{10000}{k}\left(0.999^{2}\right)^{10000-k}\left(1-0.999^{2}\right)^{k} .
$$

If the broken disk drives in a day are replaced, the equation becomes

$$
\sum_{k=0}^{9}\binom{20000}{k}(0.999)^{20000-k}(1-0.999)^{k}
$$

(c) Assume that we require K spare disk drives. Then, K should satisfy

$$
\sum_{k=0}^{K}\binom{10000}{k}(0.999)^{10000-k}(0.001)^{k} \geq 0.99
$$

Q6

(a) mean $=\frac{1}{2}$, variance $=\frac{21}{4}$
(b) mean $=-8$, variance $=105$
(c) mean $=0.6285$, variance $=0.1051$
(d) mean $=0.5$, variance $=0.125$

Q7
(a) According to the problem statement,
$p($ detected defective \mid actually defective $)=a$
$p($ actually defective $)=p$
$p($ detected nondefective \mid actually nondefective $)=1$
$p($ detected defective $)=p($ detected defective \mid actually defective $) p($ actually defective $)+$ $p($ detected defective \mid actually nondefective) p (actually nondefective) $=a p+0 \cdot(1-p)=a p$. so the result is $(1-a p)^{k} a p$.
(b) p (actually defective \mid detected nondefective $)=p$ (actually defective and detected nondefective) $/$ $p($ detected nondefective $)=\frac{p(1-a)}{1-p a}$.
(c) Given p (detected defective \mid actually nondefective) $=b$.
$p($ detected nondefective $)=p(1-a)+(1-p)(1-b)$
the answer is p (actually defective \mid detected nondefective) $=\frac{p(1-a)}{p(1-a)+(1-p)(1-b)}$. Q8
(a)Assume the observation interval is τ

$$
\begin{aligned}
P[\text { signal present } \mid X & =k]=\frac{P[\text { signal present, } X=k]}{P[X=k]} \\
& =\frac{P[X=k \mid \text { signal present }] P[\text { signal present }]}{P[X=k]} \\
& =\frac{\frac{\left(\tau \lambda_{1}\right)^{k} e^{-\tau \lambda_{1}}}{k!} \cdot p}{\frac{\left(\tau \lambda_{1}\right)^{k} e^{-\tau \lambda_{1}}}{k!} \cdot p+\frac{\left(\tau \lambda_{0}\right)^{k} e^{-\tau \lambda_{0}}}{k!} \cdot(1-p)} \\
P[\text { signal absent } \mid X & =k]=1-P[\text { signal present } \mid X=k] \\
& =\frac{\frac{\left(\tau \lambda_{0}\right)^{k} e^{-\tau \lambda_{0}}}{k!} \cdot(1-p)}{\frac{\left(\tau \lambda_{1}\right)^{k} e^{-\tau \lambda_{1}}}{k!} \cdot p+\frac{\left(\tau \lambda_{0}\right)^{k} e^{-\tau \lambda_{0}}}{k!} \cdot(1-p)}
\end{aligned}
$$

(b) The decision rule is equivalent to

$$
\frac{\left(\tau \lambda_{1}\right)^{k} e^{-\tau \lambda_{1}}}{k!} \cdot p \underset{\text { absent }}{\text { present }} \frac{\left(\tau \lambda_{0}\right)^{k} e^{-\tau \lambda_{0}}}{k!} \cdot(1-p)
$$

and thus can be simplify to

$$
k \underset{a b s e n t}{\text { present }} \frac{\ln \frac{1-p}{p}+\left(\lambda_{1}-\lambda_{0}\right) \tau}{\ln \left(\frac{\lambda_{1}}{\lambda_{0}}\right)} \triangleq T \text {. }
$$

(c) The probability of error is given by

$$
\begin{aligned}
P_{e} & =P[\text { signal present }] P[k \leq T \mid \text { signal present }]+P[k>T \mid \text { signal absent }] P[\text { signal absent }] \\
& =p \sum_{k=0}^{T} \frac{\left(\tau \lambda_{1}\right)^{k} e^{-\tau \lambda_{1}}}{k!}+(1-p) \sum_{k=T+1}^{\infty} \frac{\left(\tau \lambda_{0}\right)^{k} e^{-\tau \lambda_{0}}}{k!}
\end{aligned}
$$

Q9
(a) The numbers that will have k zeros is $n=k M \sim k M+(M-1)$. The probability is the summation

$$
\sum_{i=0}^{M-1} p^{i}\left(\frac{1}{2}\right)^{k}(1-p)=\left(\frac{1}{2}\right)^{k}\left(1-p^{M}\right)=\left(\frac{1}{2}\right)^{k+1}
$$

(b) The avarage codeword length is

$$
\sum_{k=0}^{\infty}(k+1+m)\left(\frac{1}{2}\right)^{k+1}=\sum_{k=0}^{\infty}(k+1)\left(\frac{1}{2}\right)^{k+1}+m \sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k+1}=m+2 .
$$

(c) The compression ratio is $\frac{p}{1-p}$.

