Probability and Statistics

Hw1 Solution
Problem 1.2.3 Solution
The sample space is
S={Ad..... K& A ... K&, AQ, L, KO A, ... K&} (1)
The event H is the set
H={49, ... K9}. (2)

Problem 1.3.4 Solution
Let s; denote the outcome that the down face has i dots. The sample space is S = {s1,...,54}.
The probability of each sample outcome is P[s;] = 1/6. From Theorem 1.1, the probability of the
event E that the roll is even is
P [E] = Pls2] + P|[sa] + P [s6] = 3/6. (1)

Problem 1.4.4 Solution
Each statement is a consequence of part 4 of Theorem 1.4.

(a) Since A C AU B, P[A] < P[AU B].

(b) Since B AUB, P[B] < P[AU B].

(c) Since AN B C A, P[An B] < P[A].

(d) Since AN B c B, P[An B] < P[B].

Problem 1.4.9 Solution
Each claim in Theorem 1.7 requires a proof from which we can check which axioms are used.
However, the problem is somewhat hard because there may still be a simpler proof that uses fewer
axioms. Still, the proof of each part will need Theorem 1.4 which we now prove.

For the mutually exclusive events By,..., By, let 4;, = B; fori =1,...,m and let 4; = ¢ for
i > m. In that case, by Axiom 3,

P[Bll.JBgUH-UBm]:P[AllJAQUH-] (1)
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Now, we uge Axiom 3 again on A,,, 4,,,11,... to write
S PIA]=P[AnUApp U] =P[Bn]. (4)

Thus, we have used just Axiom 3 to prove Theorem 1.4:

m

P[BiUByU---UB,] =) P[B]. (5)
=1

(a) To show P[¢] =0, let B; = S and let By = ¢. Thus by Theorem 1.4,
P[S]= P[B1U By = P[Bi]+ P[Bs] = P[S]+ P¢]. (6)

Thus, P[¢] = 0. Note that this proof uses only Theorem 1.4 which uses only Axiom 3.



(b) Using Theorem 1.4 with By = A and By = A°, we have
P[S|=P[AUA%=P[A]+ P|A7].

Since, Axiom 2 says P[S] =1, P[A°] = 1 — P[A]. This proof uses Axioms 2 and 3.

(¢) By Theorem 1.2, we can write both A and B as unions of disjoint events:
A= (AB)U(AB") B=(AB)U(A"B).
Now we apply Theorem 1.4 to write
FP[A|=FP[AB]+ P[AB“], FP[B]=F[AB|+ P[A"B].
We can rewrite these facts as
P[AB®] = P[A] — P[AB], P[A°B] = P[B] — P[AB].

(7)

(8)

(9)

(10)

Note that so far we have used only Axiom 3. Finally, we observe that A U B can be written

as the union of mutually exclusive events
AUB=(AB)U(AB")U(A"B).
Once again, using Theorem 1.4, we have
P[AU B] = P[AB] + P|AB"] + P[A°B]
Substituting the results of Equation (10) into Equation (12) vields
PAUB|=FP[AB|+ P[A|- P[AB|+ P[B]- P[AB],

which completes the proof. Note that this claim required only Axiom 3.

(d) Observe that since A C B, we can write B as the disjoint union B = AU (A°B).

Theorem 1.4 (which uses Axiom 3),
P[B] = P[A]+ P[A°B].
By Axiom 1, P[A°B] = 0, hich implies P[A] < P[B]. This proof uses Axioms 1 and 3.
Problem 1.6.3 Solution

(a) Since A and B are disjoint, P[A N B] = 0. Since P[AN B] =0,
P[AUB]|=PFP[A]+ FP[B]- FP[ANnB]=3/8
A Venn diagram should convince you that A C B® so that AN B° = A. This implies
PANB=P[A] =1/4.
It also follows that P[AU B = P[Bf] =1—-1/8 =7/8.

(b) Events A and B are dependent since P[AB] # P[A|P[B].

(¢) Since C' and D are independent,
PlCNnD)=P[C]P[D]=15/64.
The next few items are a little trickier. From Venn diagrams, we see
PlCND|=P[C]-P[CND]=5/8—-15/64=25/64.
Tt follows that
P[CuUuD=P[C]|+ P[D°] - P|[C DY
=5/8+(1—3/8) —25/64 = 55/64.
Using DeMorgan’s law, we have
PlCND)=P[(CUD)|=1—-P[CUD]=15/64.

(d) Since P|CtD¢] = P[C*|P[D*], C* and D* are independent.
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Problem 1.6.5 Solution
For a sample space §' = {1, 2, 3,4} with equiprobable outcomes, consider the events

Ay ={1,2} Ay ={2,3} Az ={3,1}. (1)
Each event A; has probability 1/2. Moreover, each pair of events is independent since
P[A1As] = P [AsA3] = P [AsA] = 1/4. (2)
However, the three events Ay, A5, A3 are not independent since
PA1A5A3] =0+ P[A] P[As] P[As]. (3)

Problem 1.7.7 Solution

The tree for this experiment is

3/4_Ho €A H H> 3/32

1/4 Hléyi T2 oA HT> 1/32

12 A1 T My €A TiH: 9/32
1/4 Ty eA1T1T 3/32

1/4__H, eByH Hy  3/32
1/2>\p, 34y, T, B H(T» 0/32

/A
/4" %Hﬂ’ B T1H> 1/32
3I~—T> eBiTiTs 3/32

The event H{H, that heads occurs on both flips has probability

P[H\H3| = P[A1H\H3] + P [BiH1Hs| = 6/32. (1)
The probability of Hy is
P[Hy]| = P[A1H1H3) + P[A1H\T5) + P [B1HH>) + P [B1H\T5) = 1/2. (2)
Similarly,
P[H9) = P[A\HH3| + P[A\T\H>] + P [B\HH3| + P [B\T1\Hs) = 1/2. (3)

Thus P[H1H3] # P[H1|P[H3], implying H; and H3 are not independent. This result should not
be surprising since if the first flip is heads, it is likely that coin B was picked first. In this case, the
second flip is less likely to be heads since it becomes more likely that the second coin flipped was
coin A.

Problem 1.8.6 Solution

(a) We can find the number of valid starting lineups by noticing that the swingman presents
three situations: (1) the swingman plays guard, (2) the swingman plays forward, and (3) the
swingman doesn’t play. The first situation is when the swingman can be chosen to play the
guard position, and the second where the swingman can only be chosen to play the forward
position. Let N; denote the number of lineups corresponding to case i. Then we can write
the total number of lineups as Ny + N2 + N3. In the first situation, we have to choose 1 out
of 3 centers, 2 out of 4 forwards, and 1 out of 4 guards so that

w000

In the second case, we need to choose 1 out of 3 centers, 1 out of 4 forwards and 2 out of 4

guards, vielding
- RAWEAWE|
w006 - ®



Finally, with the swingman on the bench, we choose 1 out of 3 centers, 2 out of 4 forward,
and 2 out of four guards. This implies

= () -

and the total number of lineups is Ny + No + Nq = 252,

Problem 1.9.5 Solution

(a) There are 3 group 1 kickers and 6 group 2 kickers. Using G; to denote that a group i kicker
was chosen, we have

P[Gy] =1/3 P[Gs] =2/3. (1)
In addition, the problem statement tells us that
P[K|Gy] =1/2 P[K|Gs] = 1/3. (2)
Combining these facts using the Law of Total Probability yields
P[K] = P[K|G1] P [Gi1] + P[K|Ga] P [Go] (3)
= (1/2)(1/3) + (1/3)(2/3) = 7/18. (4)

(b) To solve this part, we need to identify the groups from which the first and second kicker were
chosen. Let ¢; indicate whether a kicker was chosen from group i and let Cj; indicate that
the first kicker was chosen from group i and the second kicker from group j. The experiment
to choose the kickers is described by the sample tree:

2/8 _-c1 eC11 1712

3/9 oy 402 oy 1/4
<6M:C’ .<3/8 1 eCyn 174
578 cn eChy  5/12

Since a kicker from group 1 makes a kick with probability 1/2 while a kicker from group 2
makes a kick with probability 1/3,

P[K1Ky|Cy] = (1/2)* P [K1K3|Cra) = (1/2)(1/3) (5)
P K Ko|Cy1] = (1/3)(1/2) P [K (K| Ca] = (1/3)? (6)
By the law of total probability,
P [K1K3) = P [K1K3|Cu| P[Cu) + P[K1K2|Cia] P[C1a) (7)
+ P[K1Ko|Cn] P[Cu] + PR 1K2|Ca] P |Caal (=)
11 11 11 15 65 )

= il
412 64 64 912 439
It should be apparent that P[] = P[K] from part {a). Symmetry should also make it
clear that P[] = PR3] since for any ordering of two kickers, the reverse ordering is equally
likely. If this is not clear, we derive this result by caleulating P[K3|Cy;] and using the law of”
total probability to calculate P[R).

P[Ka|Cn] = 1/2, P[Ks|Cya] = 1/3, (10)
P [K3|Cn] = 1/2, P[K3|C] = 1/3. (11)



By the law of total probahility,

P [K3] = P[K3|Ci1] P [Ci1] + P [I3|Cia] P [Cha)
+ P [Ky|Co| P [Cy] + P [Ky|Cog] P [Cy] (12)
11 11 11 15 7

ez tiitritIin T (13)

We observe that Ky and K2 are not independent since
15,7\ o
P[K1K, = W # (ﬁ) = P|K4| P[Ky]. (14)

Note that 15/96 and (7/18)% are close but not exactly the same. The reason K and Ky are
dependent is that if the first kicker is successful, then it is more likely that kicker is from
group 1. This makes it more likely that the second kicker is from group 2 and is thus more
likely to miss.

(c) Once a kicker is chosen, each of the 10 field goals is an independent trial. If the kicker iz
from group 1, then the success probability is 1/2. If the kicker is from group 2, the success
probability is 1/3. Out of 10 kicks, there are 5 misses iff there are 5 suecessful kicks. Given
the tvpe of kicker chosen, the probability of 5 misses is

PIM|GH] = (150)(1;2)5(1/2)5, P[M|Gy] = (150)(1;3;5(2;335. (15)

We use the Law of Total Probability to find
P[M] = P[M|G1| P[G1] + P [M|Ga] P[Go] (16)
— (5 ) @/n0/2" + e/n0/37 /). a7)

Problem 1.10.4 Solution

From the statement of Problem 1.10.1, the configuration of device components is

|

By symmetry, note that the reliability of the system is the same whether we replace component 1,
component 2, or component 3. Similarly, the reliability is the same whether we replace component
5 or component 6. Thus we consider the following cases:

w, — w, 4 w, W,

W, W,

L]

I Replace component 1 In this case
P [WiWoWsg] = (1 - %)(1 -q)?, PWi=1-q, PWsuWg=1-¢" (1)
This implies
PWiWoWaUWy|=1—(1—-P[WiWolW,])(1—-P[Wy])=1- %(5 —4q+4%). (2
In this case, the probability the system works is

2
P (Wi = P [WiWoWsu Wy P[WsUWg] = [1— %(.5 —49+ )| (1= ). (3)

II Replace component 4 In this case,

P Wi WaWy] = (1 - q)*, PWy=1-2, PWsuWg =1-¢% (4

-]



This implies

P WoWa U Wy =1—(1— P[W1WaW3])i1— P[Wy])=1- % + %(1 —q)% (5)
In this case, the probability the system works is
P Wi = P[WiWoWs U W] P [W5 U Wg| = [l - % + g{ 1— q)s] (1—q?). (6)
1T Replace component 5§ In this case,
P[WW3Wa] = (1 — q)%, P[Wy]=1—g, PWauWg]=1- % (7D

This implies
PWiWaWau Wy =1—(1— P[WiWaW3])(1— P[Wiy]) = (1 —q) [L +e(1—g)*]. (8)

In this case, the probability the system works is

P W] = P Wy WalWs U W] P [W U W) (9)
3
—[1—@'}(1—%) [1+4q(1—q)%]. {10)

From these expressions, its hard to tell which substitution creares the most reliable civenit. First,
we observe that P[W;;] = P[W;) if and only if
1-3 80P £ g+ ¢* 11
——t=l=g) > 1—-=(5— q).

5 +3(1-4) 55— de+q) (11)
Some algebra will show that P[W;| = P[W| if and only if ¢ < 2, which oecurs for all nontrivial
ii.e., nonzero) values of g. Similar algebra will show that P[Wj;] = P[W;] for all values of
0= g = 1. Thus the hest poliey is to replace component 4.

Problem 1.11.4 Solution
To test i G-component devices, (such that each component works with probability g) we use the

following function:

function N=reliable€(n,q);

% n iz the number of 6 component devices
%N is the number of working devices
W=rand(n,6)>q;
D=(WC:,108W (2 2)8W(:,3)) IWC: ,4);
D=D&(W(:,5) [W(:,8));

N=sum(D);

The n x 6 matrix W is a logical matrix such that W(i, j)=1 if component j of device 1 works properly.
Because W is a logical matrix, we can use the MATLARB logical operators | and & to implement the
logic requirements for a working device. By applying these logical operators to the n x 1 columns
of W, we simulate the test of n cirenits. Note that D(1)=1 if device 1 works. Otherwise, D(1)=0.
Lastly, we count the number N of working devices. The following code snippet produces ten sample
rns, where each sample run tests n=100 devices for g = 0.2.

>» for n=1:10, w(n)=reliablec(100,0,2); end
> W

w:
g2 87 &8 92 91 8 85 83 90 &9

>>
As we see, the number of working devices is typically around 85 out of 100, Solving Problem 1.10.1,
will show that the probability the device works is actually 0.8663.



