Probability and Statistics

Quiz One Solution

Statement A: False

Sol:
Let $A=C$.
Events A and B are independent and events B and C are in dependent.
Obviously, events A and C are not independent.

Statement B: False

Sol:
Let B be an event with $P[B]=1$.
\because Events A and B are indepedent.
$\therefore P[A \cap B]=P[A] \cdot P[B]=P[A] \cdot 1=P[A]$
$\Rightarrow A$ is a subset of B.

Statement C: False

Sol:

Let $P[A]>0$ and $P[B]>0$.
If Events A and B are mutually exclusive, then $P[A \cap B]=0 \neq P[A] \cdot P[B]$.
\Rightarrow Events A and B are not independent.

Statement D: True

Sol:
Let $B=\{X \leq x\}, C=\{X>x\}, S$: universal set.
$\because P[B \cap C]=0, P[B \cup C]=P[S]=1$
$\therefore P[A]=P[A \cap S]$
$=P[A \cap(B \cup C)]$
$=P[(A \cap B) \cup(A \cap C)]$
$=P[A \cap B]+P[A \cap C]$
$=\frac{P[A \cap B]}{P[B]} P[B]+\frac{P[A \cap C]}{P[C]} P[C]$
$=P[A \mid B] P[B]+P[A \mid C] P[C]$
$=P[A \mid X \leq x] P[X \leq x]+P[A \mid X>x] P[X>x]$
$=P[A \mid X \leq x] F_{X}(x)+P[A \mid X>x]\left(1-F_{X}(x)\right)$

Statement E: True

Sol:
The pdf of X is represented by $f_{X}(x)$.
$\because f_{X}(x)$ is an even function.
$\therefore F_{X}(-x)=\int_{-\infty}^{-x} f_{X}(t) d t=\int_{x}^{\infty} f_{X}(t) d t=1-\int_{-\infty}^{x} f_{X}(t) d t=1-F_{X}(x)$
$\because F_{X}\left(x_{u}\right)=u$
$\therefore F_{X}\left(x_{1-u}\right)=1-u=1-F_{X}\left(x_{u}\right)=F_{X}\left(-x_{u}\right)$
$\because F_{X}(x)$ increases monotonically with its a rgument x
$\therefore x_{1-u}=-x_{u}$

