<Ex>
H,: receive 1(4) with r; (n)’s iid and f(r;H,)~G(0,5,%)
Ho: receive () with r; (u)’s iid and f(r| Ho)~G(0, G0’), G1>00
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Note: The /(r(&)) here is a nonlinear function of {r(w)}y,

® More on Sufficient Statistics

— A function of data is referred to as a statistic.

— Let us consider



The observer aims to understand é(x) based on the observed r(u).

— A statistic  /(r(u)) i1s said to be sufficient if the a posteriori density

of 9(u), given /I(r(u)),1.e., f(8]|((r)), 1s equivalent to the a

posteriori density of (u), givenr( ), 1.e., f(@|r). Thatis,

f@lir)=f(@|r), vVr,0

— Or, equivalently, a statistic /(r(«)) is sufficient if

S 4(x),0) = f(x|£(r), V1,0

(That is, given a statistic /(r(u)), r(x) does not provide any more

information about 8(u).)

<pf>

S (x,((x),0)

S| (r),0) U0.0)

_ S @], (@) f (x| £(0)) f (1))
S @] (r) f((r))

_ S @], lx) f(x] ()
f(@] (1))

t)
Since /(r) is a function of r,
f@|r,lr)=f(@|r), V1.0
It follows from (+) that
S(@]r)f(x]L(r))
VACARAEY))

S 4(r),0) =

Now, if f(r|(x),0)= f(r|((r)), then

(H)=f|lr)= f(@|r)= f(@]¢(r))= ((r) is a sufficient statistic.

Q.ED.



—Neyman-Fisher Factorization Theorem
A statistic ¢(r(u)) 1s sufficient iff

f(x]8)=g(@,{(r)h(r), V1,0

where g(60,/(r)) isa function of ¢ and /(r), and h(r) is a function
of r only.
<pf> For a rigorous proof, see S. Zacks, “The Theory of Statistical
Inference,” Wiley, 1971.

"<" I f(1]0) = g(0,((r))h(r), then

S0y (9)
Olr) =
f@n="" 0

_ 2@,LDh(x)/ (9)

f(r)
Now, /(1) = [ f(dl6)/ (8)d@
= h(r) [ g(6,(1))f (8)d8.

Thus,
(0l = 2L (©O)

[e(e.cny@)de
depends only on /(r). Therefore,
f(8lr) = f(6|/(r)) and thus /(r(u)) 1s a sufficient statistic.

"= " If /(r(u)) is sufficient, then
S (@l)f ()
9) = L4y L)
f(1]0) G
_ f(8)(x))
0N S ()
= g(0,4(r))h(r). Q.E.D.

Notes: (1) The above statements can be restated for a set of sufficient



statistics, /(r(u)), and all properties hold true.

(2) Let ¢(r(u)) be a K-dimensional sufficient statistic with r(z) being
N-dimensional and K<N. Then, /(r(x)) transforms the N-dimensional
observation space into a smaller K-dimensional sufficient space, without

losing any information on 6.

K<N

N-dim observation

space, D ::>

()

K-dim space

L(r(u))

(3) Sufficient statistics are not unique because a/f(r(u)) isalso a

sufficient statistic for any a.

*Minimum Error Probability (MEP) Criterion
eDefine: P, = Error Probability
=Pr{"H, is sent and H,, is detected"
or "H, 1s sent and H, is detected"}
=Pr{"H, 1s sent" and "H, 1s detected"}
+Pr{ "H, 1s sent" and "H, 1s detected"}
= P(H,)Pr{H, is detected|H, is sent}
+ P(H,) Pr{H, 1s detected|H, is sent}
= P(H)[, f(dH)dr+P(H,)] | f(tH,)dr
olf we set C,, = C,, =0 (No cost for correct decision)
and C,, = C,, =1(Unit or equal cost for erroneous decision),
then C = P.
Thus, MEP Criterion = Bayes Criterion with C, =C,, =0 and C,
From previous discussion on Bayes Criterion, MEP criterion

leads us to the test

P(H,) 4

H
> )
A(r) < Mg With 770, = P(H,)

H

0



Notes:
1. Bayes rule requires the cost function and a priori probability for
threshold implementation.
2. MEP rule requires the a priori probability in implementation.
3. In digital communications, a priori probabilities are usually feasible
(Equal a priori probabilities are frequently achieved for unconstrained
channels.)
Hl
A _ SH)PH) _ PHID @) _ PHD >
muer S (HOPMH,)  P(H(r)f (r) P(H,r) <
HO
The MEP test is to find H, that gives the maximum

a posteriori probability (MAP). This rule @ i1s called an MAP rule.
*Further Terminology

P. = Probability of false alarm
=Pr{H, 1s decided|H, is sent}
= [, /(H,)dr
P, = Probability of detection
= Pr{H, is decided|H, is sent} = le f(H,)dr

P,, = Probability of miss detection
=Pr{H, is decided|H, is sent}
= [, S (lHdr
=1-P,

*Minimax Criterion

The test is to minimize the maximum possible average cost, in the
absence of a priori probabilities.

Now, recall that



6 - P(Ho )C10 + P(Hl )Cn + P(H1)(C01'C11)PM 'P(Ho )(Clo'coo)(l'PF)
= 00 (1 - PF) + CIOPF + P(Hl) {(Cu'coo) + (COI_CII)PM _(CIO_COO)PF}

since P(H,) =1-P(H,). The minimax criterion can be mathematically

expressed as

min 1rnax6 min{C (1-P)+C, P
= — +
Do P (H1) Do 00 F 10°F
max
+ P(Hl ) {(Cn 'Coo) + (Cm 'Cl 1 )PM '(Clo 'Coo )PF } }
P(Hl) > ’
IfA>0,

max
P(H,) A=A and
P(H,)

o min
Criterion = b {Cpo(1-=Po) +C, P, + A}

0

min
= D {(COI_CII)PM}+C11
0
=min{ C,, , C, }
—_ =

Dy=¢ D,=¢
Coi2Cy Cyi<Cyy

IfA<O,

max
P(H,)A =0 and
P(H,)

o min
Criterion=C,, + _ P.(C,,-C,,)
DO
=min{ Cy, , Cp, §
—_

D,=¢ Dy=¢
C192Cyp Cip<Cyp

Both cases yield “no detection.”



Thus, the optimization can be obtained when

A=0,1.e.,
(G -Cpp) +(Cyy -C )Py - (Cyp -Cyg)P =0
which is called the minimax equation.

e Special Case (C,, =C,, =0)

The minimax equation becomes

CoPy =C,P;
= IDO Cof (t|H,)dr = IDI Cof(t|Hy)dr e ®
) LHS b RHS
Cropir|Hy) Co2lr |H,

LHS é . RHE .\“‘

Threshold

If threshold is increased, LHS goes up and RHS goes down.
If threshold is decreased, LHS goes down and RHS goes up.
There is a threshold satisfying g

Note: Minimax test requires the cost function in implementation



* Neyman-Pearson (NP) Criterion
The criterian is to maximize P, (or minimize P,;) under the constraint that

P. <a, where a <1 is a design value.
This 1s a constrained optimization problem, which can be solved by using
Lagrange multipliers. That is, the criterian is to do the following:

min
D P, + A[P;-a], >0

0
where A is the Lagrange multiplier.

M AL f(H, )
='p, Jo, @+ 2], fH)dr-a

min
= D '[Do [/ (t[H,) - A1 (t[Hy)]dr + A(1-a)

0
For any A4 > 0, choosing D, such that

Sf([H)-Af(r[H,) <0
will achieve the optimization. Thus, the NP test has the form of LRT
Hl

_JaiH) >
f(r[Hy) <
HO

To satisfy the constraint, A has to be chosen in a way that P, <« ,i.e.

P, = L“’f(A |H,)dA <«

A(r)

Notes:

1. In most of cases, f (A|H,) 1s continuous. Thus, the above equality

should be used since




2. NP test does not need cost function nor a priori probabilities in
implementation.
3. If 4 <0, then the criterion is
min
D P, +Ala-P.], 1<0

0
4. NP test is frequently used in radar and sonar detections.

*Observation
1. The tests based on Bayes, MEP, and NP criteria consist of LRT, namely
Hl
AX) e &)
<
H

2. The LRT implies the decision process

N-dim A(r) 1-dim
observation :> decision |, Decision
space space

mapping

That is, the decision space is 1-dim, regardless of the dimensionality

of the observation space.

3. Instead of the observed statistic r(u), a statistic A(r(x)) is sufficient
for the LRT purpose.



Now, define the transformation

(I‘l,rz,---,I‘N) _) (K,\}]lgyZa"'a}IN-lj)

y

where /(1) 1s a sufficient statistic for the test @.
Then, we can express the A(r) as
(,y[H
A(r)=A(l,y) = M
S, yHy)
/H (,H
— A(L,y) = S 1)f(z| )
— SUH (ylH,)
Since /() is a sufficient statistic for the test @
H

1

—_

: _SUH)
n with A(X) = 70,

AV L

p
A(r) 7 1isequivalent to A(Y)
<
HO HO
This implies that /' (y|/,H,) = f(y|(,H,) . That is, in the new coordinate

system (4,y,,y,, **, Y. )» the first coordinate (the one denoted by /) contains

all the information necessary for the decision problem.

=

N-dim N-dim 1-dim
| observation space »| decision

space space

P [£,y] P

10



Example: (Ex* with N = 2)

Hy: 1(u) =n, ()

r,(u) =n,(u) with n,(u) and n, () i.i.d. and ~ G(0,57)
H,: 1(u)=m+n,(4)

r,(p) =m+n,(u)
From Ex*,

2 -1
A(r) = H e 20_2(m
i=1

2
‘zl’zm)

log LRT

° 2
= (1) = (Zri) -constant

i=1

Now, define (r,,r,) — (4,y) with
0= (r+1,)/\2
y =512
= f(y|H,) ~G(0,07)
f(yH,)~G(0,0%)

= f(ylHy) = f(yIH,)
Also, /() and y(u) are independent because /() and y(u) are uncorrelated

and jointly Gaussian. Thus, f(y|/,H,) = f(y|H,). This gives f (y|(,H,) = f (y|{,H,).
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