
 1

N
iir 1)}({ =μ

1
2 2
0 1 0

2 2
1 0 1

0

2( )  with (ln ln )Bayes

H

r N

H

σ σ σα α η
σ σ σ

>
≡ −

< −

<Ex> 
 H1: receive     with ri (µ)’s iid and f(ri|H1)~G(0,σ1

2) 
 H0: receive     with ri (µ)’s iid and f(ri| H0)~G(0, σ0

2), σ1>σ0 

 

 
 
 
 
 
 
 
 
 
 
 
 

, and the equivalent test is  
 
 
 
 
 
 
 
 
Note: The        here is a nonlinear function of  
 
 More on Sufficient Statistics 

－A function of data is referred to as a statistic. 
－Let us consider 

1

2 0
2 2

10 1 1

0

2

1

1 1 1ln ( ) ( ) ln ln
2

( ) sufficient statistic

N

i Bayes
i

N

i
i

H

r r N

H

r r

σ η
σ σ σ=

=

>
⇔ Λ = − +

<

⇔ ≡ =

∑

∑

2

2
1

2

2
0

2

2
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2
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1
2(r( ) HΛ r

r( ) H 1
2

i

i

rN
σ

i

rN
σ

i

e
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f( | )

e

πσμ
μ

πσ

−

=

−

=

= =
∏

∏

)(r μ

)(r μ
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The observer aims to understand )(μθ  based on the observed )(r μ . 
 
－A statistic ))(r( μ  is said to be sufficient if the a posteriori density 
of )(μθ , given ))(r( μ , i.e., ))r(|(θf , is equivalent to the a 
posteriori density of )(μθ , given r(μ), i.e., )r|(θf . That is, 

 
－Or, equivalently, a statistic       is sufficient if  
         θθ ,r   , ))r(|r( )),r(|r( ∀= ff  
 
(That is, given a statistic ))(r( μ , )(r μ  does not provide any more 
information about )(μθ .) 

<pf> 
 
 
 
 
 
                                            (+) 
Since )r(  is a function of r , 
        θθθ ,r   ),r|( (r)),r|( ∀= ff  
It follows from (+) that 
 
 

Now, if )),r(|r( )),r(|r( ff =θ  then 
        )r())r(|()r|( (r))|()( ⇒=⇒=+ θθ ffrf  is a sufficient statistic. 
Q.E.D. 

Black 
box

θθθ ,r   ),r|( ))r(|( ∀= ff

))r(|(
))r(|r())r(,r|(

))r(())r(|(
))r(())r(|r())r(,r|(

)),r((
)),r(,r()),r(|r(

θ
θ

θ
θ

θ
θθ

f
ff

ff
fff

f
ff

=

=

=

))r(|(
))r(|r()r|()),r(|r(

θ
θθ

f
fff =

)(μθ )(μr

))(r( μ



 3

 
－Neyman-Fisher Factorization Theorem 

A statistic ))(r( μ  is sufficient iff  
 
 
where ))r(,g(θ  is a function of θ  and )r( , and )rh(  is a function 
of r  only. 

<pf> For a rigorous proof, see S. Zacks, “The Theory of Statistical 
Inference,” Wiley, 1971. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: (1) The above statements can be restated for a set of sufficient 

θθθ ,r ),r))h(r(,g()|r( ∀=f

" " If (r| ) g( , (r))h(r), then
(r| ) ( )        ( |r)

(r)
g( , (r))h(r) ( )                     

(r)

f
f ff

f
f

f

θ θ
θ θθ

θ θ

⇐ =

=

=

Now, (r) (r| ) ( )d

                 h(r) g( , (r)) ( )d .

Thus,
g( , (r)) ( )( |r)

g( , (r)) ( )d

depends only on (r). Therefore,
( |r) ( | (r)) and thus (r( )) is a sufficient statistic.

f f f

f

ff
f

f f

θ θ θ

θ θ θ

θ θθ
θ θ θ

θ θ μ

=

=

=
′ ′ ′

=

∫
∫

∫

" " If (r( )) is sufficient, then
( |r) (r)       (r| )

( )
( | (r))                   (r)

( )
                   g( , (r))h(r).          Q.E.D.

f ff
f

f f
f

μ
θθ

θ
θ
θ

θ

⇒

=

=

=
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N-dim observation 
space, D 

)(r μ  

K-dim space 

))(r( μ  

K<N 

00 11

01 10

e

00 11 01 10

If we set C C 0 (No cost for correct decision) 
           and C C 1(Unit or equal cost for erroneous decision), 

then C P .
Thus, MEP Criterion  Bayes Criterion with C C 0 and C C 1.
Fro

• = =

= =

=

≡ = = = =

1

0
MEP MEP

1

0

m previous discussion on Bayes Criterion, MEP criterion 
leads us to the test

H
P(H )                          (r)     with 
P(H )

H

η η
>

Λ ≡
<

statistics, ))(r( μ , and all properties hold true. 
(2) Let ))(r( μ  be a K-dimensional sufficient statistic with r( )μ  being 
N-dimensional and K<N. Then, ))(r( μ  transforms the N-dimensional 
observation space into a smaller K-dimensional sufficient space, without 
losing any information on θ . 
 
 
 
 
 
 
(3) Sufficient statistics are not unique because (r( ))a μ  is also a 
sufficient statistic for any a. 
 
*Minimum Error Probability (MEP) Criterion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e

1 0

0 1

1 0

Define:  P Error Probability
           Pr{"H  is sent and H  is detected"
                             or "H  is sent and H  is detected"}
            Pr{"H  is sent" and "H  is detected"}
          

• ≡

≡

=

0 1

1 0 1

0 1 0

1 1

                    Pr{ "H  is sent" and "H  is detected"}
            (H )Pr{H  is detected|H  is sent}
                              (H ) Pr{H  is detected|H  is sent}

            (H ) (r|H )dr

P
P

P f

+

=

+

= +
0 1

0 0(H ) (r|H )dr
D D

P f∫ ∫
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*Further Terminology 
 
 
 
 
 
 
 
 
 
 
 
 
*Minimax Criterion 
The test is to minimize the maximum possible average cost, in the 
absence of a priori probabilities. 
Now, recall that 

Notes: 
1. Bayes rule requires the cost function and  probability for 
   threshold implementation.
2. MEP rule requires the  probability in implementation.
3. In digital communications, 

a priori

a priori
a

1

1 1 1 1

MEP 0 0 0 0

probabilities are usually feasible
(Equal  probabilities are frequently achieved for unconstrained 
channels.)

H
(r) (r|H )P(H ) (H |r) (r) (H |r)4. 

(r|H )P(H ) (H |r) (r) (H |r)

 priori
a priori

f P f P
f P f Pη

Λ
= = =

0

i

1     

H
    The MEP test is to find H  that gives the maximum 
     probability (MAP). This rule  is called an MAP rule.a posteriori

>
⊕

<

⊕

1

F

1 0

0D

P Probability of false alarm
Pr{H  is decided|H  is sent}

(r|H )drf

≡
≡

= ∫

1

D

1 1 1D

P Probability of detection

Pr{H  is decided|H  is sent} (r|H )drf

≡

≡ = ∫

0

M

0 1

1D

D

P Probability of miss detection
Pr{H  is decided|H  is sent}

(r|H )dr

1 P

f

≡
≡

=

= −

∫
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Both cases yield “no detection.” 

0 10 1 11 1 01 11 M 0 10 00 F

00 F 10 F 1 11 00 01 11 M 10 00 F

0 1

0

C P(H )C P(H )C P(H )(C -C )P -P(H )(C -C )(1-P )
(1 P ) C P P(H ){(C -C ) (C -C )P -(C -C )P }

since P(H ) 1-P(H ). The minimax criterion can be mathematically 
expressed  as

min max
D

C
= + +

= − + + +

=

00 F 10 F
01

1 11 00 01 11 M 10 00 F
1

min
C {C (1 P ) C P

DP(H )
max

                       P(H ){(C -C ) (C -C )P -(C -C )P }}
P(H )

≡Δ

= − +

+ +

1
1

00 F 10 F
0

01 11 M 11
0

1

If 0, 
max

             P(H )   and
P(H )

min
                      Criterion {C (1 P ) C P }

D
min

                                    {(C C )P } C
D

                                    min{ C

Δ >

Δ = Δ

= − + + Δ

= − +

=
0 1
01 11 01 11

1 0
10 00 10 00

1 01
D D
C C C C

1
1

00 F 10 00
0

00 10

D D
C C C <C

, C }

If 0,
max

              P(H ) 0 and
P(H )

min
                       Criterion C P (C -C )

D
                                     min{ C , C }

φ φ

φ φ

= =
≥ <

= =
≥

Δ <

Δ =

= +

=
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Thus, the optimization can be obtained when 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If threshold is increased, LHS goes up and RHS goes down. 
If threshold is decreased, LHS goes down and RHS goes up. 
There is a threshold satisfying  
Note: Minimax test requires the cost function in implementation 
 
 
 
 
 
 
 
 

equation.minimax   thecalled iswhich 
0)PC-(C-)PC-(C)C-(C    

i.e., ,0Δ

F0010M11010011 =+
=

⊗=⇒

=

==•

∫∫     r)dH|r(Cr)dH|r(C

PCPC
becomesequation minimax  The

0)C(C Case Special

10 D 010D 101

F10M01

1100

RHSLHS

ff

⊗
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* Neyman-Pearson (NP) Criterion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: 

 
 
 
 
 
 
 

D M

F

The criterian is to maximize P  (or minimize P ) under the  constraint that 
P ,  where 1 is a design value.
This is a constrained optimization problem, which can be solved by using  
Lagrange multipl

α α≤ <

0 1

0

M F
0

1 0D D
0

1 0D
0

iers. That is, the criterian is to do the following:
min

                 P [P - ], 0
D

where  is the Lagrange multiplier.
min

(r|H )dr [ (r|H )dr- ]
D
min

[ (r|H ) (r|H )]dr (1- )
D

f f

f f

λ α λ

λ

λ α

λ λ α

+ >

⇒ +

⇒ − +

∫ ∫

∫

LRT of form  thehas test NP  theThus, on.optimizati  theachieve will
 0)H|r(-)H|r(

such that  D choosing 0,any For 

01

0

<
>

ff λ
λ

λ

H

H

)H|r(
)H|r()r(

0

1

0

1

<
>

=Λ
f
f

i.e. , P way that ain chosen  be  tohas  ,constraint esatisfy th To F αλ ≤

∫
∞

≤Λ=
λ

α)dH|(ΛP 0F f

i1. In most of cases, ( |H ) is continuous. Thus, the above equality 
should be used since

f Λ

Λ Λ
1|H 1( |H)fΛ Λ

0|H 0( |H)f

PD 

PF 
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*Observation 
 
 
 
 
 
 
 
 
 
 
 
 

That is, the decision space is 1-dim, regardless of the dimensionality 
of the observation space. 

M F
0

2. NP test does not need cost function nor a priori probabilities in 
    implementation.
3. If 0, then the criterion is

min
                P [ -P ],  0

D
4. NP test is frequently used in radar and 

λ

λ α λ

<

+ <

sonar detections.

1

0

1. The tests based on Bayes, MEP, and NP criteria consist of LRT, namely
H

                   (r)   

H
2. The LRT implies the decision process

η
>

Λ ⊕
<

N-dim 
observation 
space 

1-dim 
decision 
space 

mapping 

)r(Λ

3. Instead of the observed statistic r( ), a statistic (r( )) is sufficient
    for the LRT purpose.

μ μΛ

Decision 
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1 2 N 1 2 N-1

y

Now, define the transformation
                          (r ,r , ,r )  ( , y ,y , , y )

where ( ) is a sufficient statistic for the test .
Then, we can express the (r) as

                     

μ

→

⊕
Λ

1

0

1 1

0 0

1

0

( , y|H )
    (r) ( , y)

( , y|H )

( |H ) (y| ,H )
                 ( , y)

( |H ) (y| ,H )

Since ( ) is a sufficient statistic for the test  
H

                          (r)  is equivalent to (

H

f
f

f f
f f

μ

η

Λ = Λ =

⇒Λ =

⊕

>
Λ Λ

<

1

1

0

0

1 0

1 2 N-1

H
( |H ))  with ( )
( |H )

H
This implies that (y| ,H ) (y| ,H ) . That is, in the new coordinate  

system ( ,y ,y , , y ), the first coordinate (the one denoted by ) contains
all the informatio

f
f

f f

η
>

Λ =
<

=

n necessary  for the decision problem.

N-dim 
observation 
space 

N-dim 
space 

[ , y ] 

1-dim 
decision 
space 
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2
2

0 1 1

2
2 2 1 2

1 1 1

2 2

2 1 ( 2 )

1

log LRT

2

Example: (Ex* with N 2)

H :  r ( ) n ( )

        r ( ) n ( ) with n ( ) and n ( ) i.i.d. and ~ G(0, )
H :  r ( ) n ( )
        r ( ) n ( ) 
From Ex*,

           (r)

(r) ( r

i

i

mm

m
m

re σ

μ μ

μ μ μ μ σ
μ μ
μ μ

−
−

=

=

=

=
= +
= +

Λ =

⇒ =

∏
2

i
1

1 2

1 2

1 2
2

0

2
1

0 1

) constant

Now, define (r ,r )  ( ,y) with

                (r +r )/ 2

                y (r -r )/ 2

(y|H ) ~ G(0, )

     (y|H ) ~ G(0, )
(y|H ) (y|H )

Also, ( ) and y( ) are independent becaus

i

f

f
f f

σ

σ

μ μ

=

⋅

→

=

=

⇒

⇒ =

∑

i i 1 0

e ( ) and y( ) are uncorrelated 
and jointly Gaussian. Thus, (y| ,H ) (y|H ). This gives (y| ,H ) (y| ,H ).f f f f

μ μ
= =


