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[image: image1.png]Problem 8.1.1 Solution
Assuming the coin is fair, we must choose a rejection region R such that a = P[R] = 0.05. We can
choose a rejection region R = {L > r}. What remains is to choose r so that P[R] = 0.05. Note
that L > [ if we first observe [ tails in a row. Under the hypothesis that the coin is fair, [ tails in a
row occurs with probability

P[L>1=(1/2)} (1)

Thus, we need
P[R]=P[L>r]=2"=005 (2)
Thus, r = —logy(0.05) = logy(20) = 4.32. In this case, we reject the hypothesis that the coin is

fair if L > 5. The significance level of the test is & = P[L > 4] = 2% = 0.0625 which close to but
not exactly 0.05.

The shortcoming of this test is that we always accept the hypothesis that the coin is fair
whenever heads occurs on the first, second, third or fourth flip. If the coin was biased such that
the probability of heads was much higher than 1,2, say 0.8 or 0.9, we would hardly ever reject the
hypothesis that the coin is fair. In that sense, our test cannot identify that kind of biased coin.
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(a) We wish to develop a hypothesis test of the form
P(|K - E[K]| > =005 1)

to determine if the coin we've been flipping is indeed a fair one. We would like to find the
value of ¢, which will determine the upper and lower limits on how many heads we can get
away from the expected number out of 100 fiips and still accept our hypothesis. Under our
fair coin hypothesis, the expected number of heads, and the standard deviation of the process
are

E[K] = 50, ok =/100-1/2-1/2

Now in order to find ¢ we make use of the central limit theorem and divide the above inequality
through by ok to arrive at

(2)

P [w > 3)

TK
Taking the complement, we get

p[,LSI"E K
oK oK

Using the Central Limit Theorem we can write

@(i) —fb(i> =20 (i> —1=005 (5)
oK IK TK

This implies &(c/ox) = 0.975 or ¢/5 = 1.96. That is, ¢ = 9.8 flips. So we see that if we
observe more then 50 + 10 = 60 or less then 50 — 10 = 40 heads, then with significance level
@ 0.05 we should reject the hypothesis that the coin is fair.




[image: image3.png](b) Now we wish to develop a test of the form
PIK >c]=0.01 (6)

Thus we need to find the value of ¢ that makes the above probability true. This value will
tell us that if we observe more than ¢ heads, then with significance level & = 0.01, we should
reject the hypothesis that the coin is fair. To find this value of ¢ we look to evaluate the CDF

k
Feh) =3 (“?0)(1/2)‘””. )

i
=0

Computation reveals that ¢ ~ 62 flips. So if we observe 62 or greater heads, then with a
significance level of 0.01 we should reject the fair coin hypothesis. Another way to obtain
this result is to use a Central Limit Theorem approximation. First, we express our rejection
region in terms of a zero mean, unit variance random variable.

P{Is—E[A] —E[K —o01 ®)
oK oK
Since E[K] = 50 and o = 5, the CLT approximation is
- c =50
P[1&><‘]ml—fb( = ):0.01 ()

From Table 3.1, we have (¢ — 50)/5 = 2.35 or ¢ = 61.75. Once again, we sce that we reject
the hypothesis if we observe 62 or more heads.
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For the MAP test, we must choose acceptance regions Ao and A; for the two hypotheses Ho and
H,. From Theorem 8.2, the MAP rule is

Py, (n) _ PHy].

€ Agif > € A; otherwise. 1
Ay it G Sy € A orhense &)

Since Py, (n) = A2e= /nl, the MAP rule becomes
n € Agif <%> e=(o=A1) > ﬂgﬂ n € Ay otherwise. (2)

By taking logarithms and assuming Ay > Ao yields the final form of the MAP rule

Ax = o + In(P{Ho) /P [Hi))

In(A1/Ao) n € Ay otherwise. 3)

neAgifn<n*=

From the MAP rule, we can get the ML rule by setting the a priori probabilities to be equal. This
vields the ML rule

)

m- n € Ay otherwise. 4)

neApifn<n’ =
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(a) Given Ho, X is Gaussian (0,1). Given Hi, X is Gaussian (4,1). From Theorem 8.2, the

MAP hypothesis test is

Iximo (r) _ e/

x e Agif
" T ()

r € A otherwise.

Since a target is present with probability P[H;] = 0.01, the MAP rule simplifies to

%ln (}}z {Zﬂ) =315 € A; otherwise.

€ Ag if v < oMap

(1)




[image: image6.png]The false alarm and miss probabilities are
Pra = PX 2 ayap|Ho] = Q(amap) = 816 x 107 3)
Puiss = P[X < oyaplHi) = ®(avap —4) = 1 — $(0.85) = 0.1977. (4)
The average cost of the MAP policy is

E [Cymap] = CioPra P [Ho] + Co1PaissP [Hi) (5)
= (1)(8.16 x 1074)(0.99) + (10%)(0.1977)(0.01) = 19.77. (6)

The cost of a false alarm is Cio = 1 unit while the cost of a miss is Coy = 10% units. From
Theorem 8.3, we see that the Minimum Cost test is the same as the MAP test except the
P[Ho] is replaced by CioP[Ho] and P[H)] is replaced by CoyP[H1]. Thus, we see from thr
MAP test that the minimum cost test is

redgifr<ac=2- %m <%> =0.846; €A otherwise. M

The false alarm and miss probabilities are
Ppa =P [X > znc|Ho) = Q(euc) = 0.1987 (8)
Pyss = P [X < oyelHi] = ®(ape — 4) = 1 — B(3.154) = 8.06 x 1074, 9)
The average cost of the minimum cost policy is
E[Cuc] = CroFPeaP [Ho] + Cor Puiss P [H1] (10)
= (1)(0.1987)(0.99) + (10%)(8.06 x 107%)(0.01) = 0.2773. (11)

Because the cost of a miss is so high, the minimum cost test greatly reduces the miss proba-
Dility, resulting in a much lower average cost than the MAP test.
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Since the three hypotheses Ho, Hy, and Hj are equally likely, the MAP and ML hypothesis tests
are the same. From Theorem 8.8, the MAP rule is

£ € A if fxig, (£) = Fxim, () for all j. &)




[image: image8.png]Since N is Gaussian with zero mean and variance 0%, the conditional PDF of X given H; is

Fip () = e @
Thus, the MAP rule is
€ Am if (r —a(m —1))? < (z — a(j —1))? for all j. (3)
This implies that the rule for membership in Ag is
z € Agif (z+0a)® < 2® and (z+a)? < (z —a)®. )
This rule simplifies to
reAgife < —af2 (5)

Similar rules can be developed for A and Az. These are:

reAif—a/2< s <a/2 (6)
rEeAyifrzal2 (7

To summarize, the three acceptance regions are
Ap={rfr < —a/2}  Ay={z|—a/2<c<a/2}  Ay={z|r>a/2} ()

Graphically, the signal space is one dimensional and the acceptance regions are

Just as in the QPSK system of Example 8.13, the additive Gaussian noise dictates that the ac-
ceptance region A; is the set of observations x that are closer to s; = (i — 1)a than any other
sje
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In Problem 8.3.1, we found the MAP acceptance regions were
Ao={zle < —a/2}  Aj={e]-a/2<c<a/2}  Ay={r]e>a/2} &)

To caleulate the probability of decoding error, we first calculate the conditional error probabilities

P[Dp|Hi] =P[X ¢ A;|Hj] (2)
Given H;, recall that X = a(i — 1) + N. This implies
P[X ¢ AolHo] = P[~a+N > —a/2] = P[N >a/2 =Q (%) 3)
N
PIX & A = PIN < —a/2l+ PV > 0/2 =20 (52 )
N

P[X ¢ AglHa] = Pla+ N <a/2] = P[N < —a/2] = Q (





[image: image10.png]ince the three hypotheses Hy, Hy, and Hy each have probability 1/3, the probability of error is

2

P[De] =3 P(X & AilH] P[Hi] = 2

=0
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