How to Test:

Layer 3 **Switches**

340-1004-001 Rev B, 1/99

Netcom Systems, Inc. 20550 Nordhoff St. Chatsworth, CA 91311

(818) 700-5100 Phone (818) 709-7881 FAX

Copyright © 1998 Netcom Systems, Inc. All Rights Reserved. Printed December 1998.

International copyright laws prohibit the copying, reproducing or transmitting of part or all of this document in any form or by any means, electronic or mechanical, including photocopying, facsimile or recording, for any purpose without the express written permission of Netcom Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of Netcom Systems, Inc.

Netcom Systems, Inc. makes no warranties with respect to the contents or the use of this documentation and specifically disclaims any expressed or implied warranties of merchantability or fitness for a particular purpose. Further, Netcom Systems, Inc. reserves the right to revise this publication and to make changes to its contents, at any time, without obligation to notify any person or entity of such revisions or changes. Netcom Systems, Inc. also assumes no responsibility for any errors that may appear in this document.

How to Test Layer 3 Switches

with ML-7710 SmartCards & SmartWindow

A Guide for Evaluating the Performance of

Layer 3 Devices

using Netcom Systems SmartBits Performance Analyzer and Software

Netcom Systems is pleased to provide a general procedure for testing Layer 3 device performance. The SmartBits chassis, multi-layer ML-7710 SmartCards, and an easy-to-use SmartWindow program are the tools to provide a test methodology which is highly effective in providing critical data to evaluate Layer 3 devices.

PART I: Introduction	4
What is a Layer 3 Switch?	4
Test Methodology	4
PART II: Setting One Stream per Card & Displaying Counters	7
Preparing the Device Under Test (DUT)	7
Procedure 1: Default Global Settings to Review	8
Procedure 2: Preferences to Review	9
Procedure 3: Setting Up One Layer 3 Stream per ML-7710 SmartCard	10
Procedure 4: Pinging to Check Links	14
Procedure 5: Transmitting Traffic and Viewing Counters	15
PART III: Setting Multiple Streams per Card & Displaying Counters	16
Procedure 6: Setting Up 20 Streams per ML-7710 SmartCard	16
Procedure 7: Creating an SMB Group, Transmitting Traffic, & Viewing Counters	
PART IV: Detailed Tracking and Statistical Results	21
Procedure 8: Performing Latency and Sequence Tracking Tests	21
Procedure 9: Inspecting Raw Packets	
Procedure 10: Viewing ARP Response Times	24
Procedure 11: Using Triggers and Capture	
Appendix A, Sending PING, SNMP, and RIP Frames	32
Appendix B, Editing Frames	33
Appendix C, Tips for Testing a Specific Parameter	

Part I: Introduction

What is a Layer 3 Switch?

In most cases, a Layer 3 switch is in fact a fast protocol-based router minus certain router functions. A Layer 3 switch typically works with only one or two protocols, performs at or close to wire speed, is good at keeping streaming packets in order, and makes routing decisions based on ASICs (unlike a router which is software-based).

The 10 Mbps, 100 Mbps and Gigabit Ethernet Layer 3 switches are expected to operate at full line-rate at Layer 2 and wire-speed IP routing at Layer 3 simultaneously on all ports with zero packet loss and extremely low latency.

Test Methodology

SmartWindow is a highly effective front panel GUI designed for developers and QA personnel, who wish to create traditional and custom tests. SmartWindow offers test parameters recommended in the following supported RFCs:

RFC 1242, Benchmarking Terminology for Network Interconnection Devices

RFC 1944, Benchmarking Methodology for Network Interconnect Devices

The ML-7710 SmartCard can simulate up to 1000 hosts sending varied or uniform traffic to the layer 3 switch and can fully characterize the switch on both Layer 2 and Layer 3.

The SmartWindow tests and results which demonstrate the performance capability of the switch include the following topics:

- 20 Counters (transmit and receive packets and bytes, packet loss, triggers, tags, collisions, errors, ARP and ping counters)
- Sequence Tracking data
- Latency Distribution data
- Latency over Time data

Sample Layer 3 Test Results

Layer 3 Tests - [Sequence Tracking]	j - 6/28/1	998 10:53:3	2 - Port 02 🕨	IL-7710 - (i	untitled)]		_ 🗆 ×
Eile Edit Actions View Format W	indow <u>H</u> el						<u>-8×</u>
			0				
Toot Turpe:		Port VTE	Frames	InSeq	Duplic	cate Lost	
Sequence Tracking	1	1	1	562	562	0	0
Limits:	2	2 1	2	562	562	0	0
			3	562	562	0	
			5	561	561	0	
	E E		6	561	561	0	0
	7	7 1	7	561	561	0	ō
	8	3 1	8	561	561	0	0
	9	9 1	9	561	561	0	0
I x Ports Hx Ports	10		10	561	561		
Layer 3 Lests - [[16]Latency distribution (in mid	croseconds	sj - 67287199	8 11:39:36 - 1	Port UZ ML-	7710 - Lunti		<u> </u>
The File Format Actions View Format Window Help	m i en le						즤 !
							_
Test Type: (16) stency distribution	VTE F	rames <=	=1000.0 <=	=2000.0	<=3000.0	<=4000.0	<u>-</u>
	1	41909	41008	20	776	105	
Latency Histogram:	2	41909	30568	10002	105	1234	
Intervals (in microseconds)	4	41909	6074	35768	12	55	
	5	41909	26415	5128	10252	114	
3 3000 6	6	41909	21028	11111	6833	2937	
4 4000 7	7	41909	31543	2025	0	8341	
5 5000 3	8	41909	10666	31043	198 2127	2	
Tx Ports Rx Ports 10	10	41303	8633	21331	4321	946	
Ø 01 ML-7710 Ø 01 ML-7710 Ø 02 ML 7710 Ø 02 ML 7710							
	-	1.3 0.100	11 000 11 5	- 00 D .	00 111 774		
Layer 3 Tests - [Latency over time [in	microsec	ondsj - 6728	71998 11:5:	o:UU - Port	UZ ML-7710	J - (untiti	
<u>Hite Edit Actions View Format Wind</u>	ow <u>H</u> elp	_1 _1 _1				-	-비즈
		비림림	•				
Test Turner		MilliSec	Frames	Minimum	Maximum	n Average	_
Latency over time	1	2000	100	D	0.1	0.2	0.1
Latency Time:	2	3000	100	D	0.1	0.2	0.1
Milliseconds per Interval	3	4000	100	0	0.1	0.2	0.1
1000	4	5000	100		0.1	0.2	0.1
	5	5000	100	0 D	0.1	0.2	0.1
	7	2000	100	n	0.1	0.2	0.1
	8	9000	100	0	0.1	0.2	0.1
	9	10000	100	- D	0.1	0.2	0.1
Tx Ports Rx Ports	10	11000	39	5	0.1	0.2	0.1
🛛 🗹 01 ML-7710 🔤 🗋 01 ML-7710							

What is a Stream?

It is essential to understand SmartBits streams which provide the basis for using the ML-7710 traffic and test capability. Each stream, generated by its own Virtual Transmit Engine (VTE), represents a repeated packet with the following features:

- Designed to set up traffic for testing layer 2 (switching) or layer 3 (routing) .
- A signature in each packet contains its source and destination location, its sequence in the traffic flow, and when it was sent and received.
- Each stream has its own IP/MAC source and destination addresses, frame length, protocol or custom packet, IP gateway for routing, and statistics/histogram tracking capability.
- With IP, each stream also has ARP request and response ability.
- The stream of one card typically transmits to the stream of another card, simulating transmission from one host computer to a second host computer. Both can be on the same subnet or on different subnets.
- If 10 streams are defined, the 10 packets are transmitted in the order created, then re-cycled to transmit the next 10, until the transmission is stopped. If only one stream is created for a card, then the traffic is comprised of the one packet type.
- Each ML-7710 SmartCard may transmit up to 1000 streams per card, and may track statistics/histogram information on up to approximately 80,000 streams.

Unlike the older SmartCards such as the SX-7410 Ethernet SmartCard which is a packet blaster for hubs and switches, the ML-7710 is equivalent to 1000 IP connections, now condensed into a simple format for creating 1000 streams which closely mimic real world traffic.

Place 20 ML-7710 cards into a SmartBits chassis, then stack 4 chassis; with 80 cards, you can arrange up to 80,000 streams.

Hard Disk Requirements for Streams

If you set up 1000 streams, the setup configuration for each card can take 5 to 7 Mbytes of hard drive (see saved *.msi files).

Multiply by 20 cards = 120Mbytes of hard drive per test setup

Multiply by 4 chassis = 480Mbytes of hard drive per test setup

If you want to make histogram measurements, double your estimated hard drive requirement.

Other Applications Available

More tests are available with the ML-7710. These will be presented in another paper in the near future. The additional applications are:

SmartApplications

SmartApplications is a Windows®-based application software program that works with SmartBits systems. These applications automate RFC 1242 testing for determining Throughput, Packet Loss, Latency, Back-to-Back Performance testing <u>under full load</u>, and production Go/No-Go tests for "minimum acceptable" performance levels. Tests are available for Ethernet, Token Ring, ATM, and Frame Relay.

Advanced Switch Tests (AST)

AST is an easy to use Windows-based application software program that generates heavy bursts of multidirectional traffic to test 10/100/1000 Mbps Ethernet and 4/16 Mbps Token Ring networks. The application can test requirements described in RFC 2285, and includes tests for head-of-line blocking, filtering illegal frames,

backbone switching, forward rate/IFG, address handling, broadcast frames, and fanout, for Ethernet and Token Ring networks in half or full duplex mode.

♦ VAST

VAST is an easy to use Windows-based application that generates heavy bursts of multidirectional stream-based traffic to test switches, routers, and VLANs. The application includes preprogrammed tests for VLAN by port, VLAN by MAC address, VLAN by tag, VLAN by IP subnet, VLAN by protocol, VLAN setup time, filtering illegal frames, many-to-many switching, and routing between VLANs. At least two ML-7710 SmartCards are required to perform these tests.

• SmartLib Programming Library

SmartLib provides an RFC 1242 API compliant programming library interface for rapid test development. Software developers may also use it to develop programs in Visual Basic, C, or C++ in a Windows 95 environment, and C, C++ or TCL in a UNIX® environment.

PART II: Setting One Stream per Card & Displaying Counters

This section presents introductory startup procedures and a basic test scenario based on a single stream from each SmartCard:

Procedure 1:	Default Global Settings to Review
Procedure 2:	Preferences to Review
Procedure 3:	Setting Up One Layer 3 Stream per ML-7710 SmartCard
Procedure 4:	Pinging to Check Links
Procedure 5:	Transmitting Traffic and Viewing Counters

The test configuration illustrated in the first five procedures has the following connections:

- Two ML-7710 SmartCards are installed in slots 16 and 17 of a SmartBits chassis
- The SmartBits chassis is connected to a PC with SmartWindow via an Ethernet port.
- The two ML-7710 ports of the SmartBits chassis is connected to two gateway ports on the Layer 3 switch/router (Device under Test).

The two subnets and related IP addresses are shown in the illustration below:

Preparing the Device Under Test (DUT)

IMPORTANT: SNMP functionality, proprietary polling and Spanning Tree frames generated by the DUT will lower the measured performance of the DUT. It is recommended that you turn off all traffic generated by the DUT in order to get actual performance of the switching fabric.

Procedure 1: Default Global Settings to Review

The default settings of each SmartCard should be checked to ensure that they are still appropriate.

- 1. Open SmartWindow.
- 2. In SmartWindow, click on each ML-7710 SmartCard, and select the Layer 3 Mode.

3. Click on each ML-7710 SmartCard, and select the Transmit Setup command.

4. In the Transmit Setup window, click the **This Port** button to view the default global settings for the card. Most fields are optional.

Transmit Mode	Continuous	Background	Background fill pattern inside the IP packet (between the IP header and signature field). Custom default is often used
	Interpacket <u>G</u> ap	VFD3 Setup (Protocol)]
	Rate: 0.96	State: Off 💌	
Interpacket Gap set by default for FULL WIRE RATE	Units:	Value: Edit	Used in Layer 2 mode only; disregard for Layer
	- Error Generation	Byte Offset	3 mode.
Error Generation (added to	CRC Dribble	12	
each packet if selected)	- 🗖 Alignment 🗖 Symbol	Adjacent to VFD2	
	Collision	# of Packets Length(bytes)	
	T Enable # of Packets:		
	Layer 3	UK Cancel	Ţ

Procedure 2: Preferences to Review

There are three preferences which merit quick consideration. Click the Options menu **Preferences** command.

- The default inter ARP gap is set to 9.6 usec as a standard specification and by default cannot be changed for a SmartCard. However, if you wish to change this gap (for instance, a switch cannot process ARP requests at full wire speed), you must turn on the Preference checkbox for Allow time control of ARP requests. Then you can re-set the inter ARP gap for each port as needed (click the SmartCard and select Layer 3 Setup).
- To automatically update (with speeds, duplex mode, and autonegotiation settings) the Fast Ethernet cards with the last saved configuration or a newly opened configuration file, click the checkbox for Restore MII Control register 0 after File/Open.

SmartWindow Preferences	x
General ✓ Connect to SmartBits at Startup Initialize Ports after Connect ✓ Initialize Ports after File/Open or File/New ✓ Display 3D dialogs ✓ Use small fonts in dialogs ✓ Use Left-Click popup menu over SmartCards Layer3 Ethernet Cards (L3-67xx, ML-77xx) ✓ Allow time control of ARP requests Default: 9.6	East Ethernet Cards (SX-7x05, SX-7x10, ML-77xx) Allow MII Auto-Negotiate Restore MII Control register 0 after File/Open Sx-6x05 10Mb Ethernet Allow bit level control of VFD1 & 2 ST-6410 Full Duplex 10Mb Ethernet Restore duplex setting after File/Open TR-8405 <u>L</u> oken Ring Context menu Speed/Duplex control Restore ring parameters after File/Open Use BuiltInAddress as SourceAddress Use UpstreamNeighbor as DestAddress

 To allow MII auto-negotiation for all the Fast Ethernet SmartCards, check the checkbox for Allow MII Auto-Negotiation. Then to selectively enable auto-negotiation for each or any SmartCard, click the SmartCard, select MII Registers, and click the checkbox for Enable Auto-Negotiate.

Procedure 3: Setting Up One Layer 3 Stream per ML-7710 SmartCard

This procedure shows how to configure a single stream in each of two ML-7710 SmartCards (ports 16 and 17 of an SMB-2000 chassis) with SmartWindow 6.25. The SmartBits chassis is connected to a layer 3 switch. It is helpful to set up address assignments in patterns that are easy to remember and interconnect.

IMPORTANT The MAC and IP addresses of streams must be *unique* to the streams and cannot be used for ports. The IP address of a stream or a port should be on the same subnet of the associated gateway.

1. In SmartWindow, click on the ML-7710 port 16 SmartCard, and confirm that the Layer 3 Mode is selected.

2. Click the SmartCard again, then select Layer 3 Setup command.

The **Layer 3 Setup** window describes the local stack and is optional for most testing requirements. This window is edited for the following purposes:

- -- to set the gateway IP address of the router port (DUT) -- REQUIRED for Layer 3 switches
- -- to change MAC and IP addresses (if needed) so that they do not duplicate stream addresses
- -- to set the netmask for management frames if needed (optional; ignored by streams)
- -- to specify a Ping IP address for pings and SNMP frames if needed (optional)
- -- to specify frequency for Ping, SNMP, or RIP (optional)

Port 16 Layer 3 Setup: Set the MAC and IP addresses and gateway address as shown below. Gateway is the IP address of router port. MAC address is for the card (not stream). The IP address must be in the same subnet as the router port/gateway. Once addresses are entered, click **OK**.

Layer 3 Setup - Port 16 ML-7710 100Mb Multi-Layer Eth 🗙	For SmartCard port only. Often no entries are
MAC Address: 00 00 00 00 00 16 OK	added here. We use the IP address as a way to ping and check links. Ensure that these
IP Address: 146.072.001.003 Cancel	addresses DO NOT duplicate stream addresses.
Netmask: 255.255.000.000	Netmask used only with management frames.
<u>G</u> ateway: 146.072.001.001	REQUIRED IP address of router port/gateway.
Ping <u>T</u> arget: 000.000.000	This is also the default gateway for all streams. Gateway is only used for routers or Layer 3
Ping frequency: 1/10th seconds)	switches.
SNMP frequency: 0 (1/10th seconds)	
<u>RIP frequency:</u> 0 (1/10th seconds)	
Inter ARP Gap: 9.6 vSec V	
Reply to all <u>A</u> RP requests	

IMPORTANT FOR ARP EXCHANGE: The gateway IP address is the target address for ARP frames. If the gateway IP address is zero, the ARP frames will target the destination IP addresses of the streams.

3. In the Transmit Setup window, highlight the default stream and click the **Delete** button. The default stream will be replaced with new fully defined streams.

l Virtu	ıalT ra	nsmitEngi	ne (VTE) Setup ·	Port	16 ML-7	710 100	4b Multi-	Layer Ether 📕 🖬 🗙
Select	the V1	FEs. Use the	e 'Ctrl' key for multiple	e seleci	tions.			Colored VTE -
#	Len	MAC Dist	MAC Src	Туре	Net Src	Net Dst	Gateway	Selected VIEs
2	60	ff ff ff ff ff ff ff	00 00 00 00 00 10	0000				A <u>c</u> tivate
								Deactivate

 Click the Add VTEs button to add a stream onto port 16. Select IP from the Protocol pulldown menu, and click OK. In the Protocol Editor, toggle the View menu Concise/Detail command to see more fields. Enter the necessary addresses.

Stream on Port 16

The MAC Dest is the MAC address of router port; it is automatically updated via ARPs; note that when the ARP response is received, the ARPs are handled internally and not updated here. The MAC Src is the MAC address of the stream. The Source IP is the IP address of the stream. The Dest IP is the destination or target IP address.

5. Now configure the port and stream for ML-7710 Port 17. Click the port 17 SmartCard and select Layer 3 Setup command.

Port 17 Layer 3 Setup: Set the MAC and IP addresses and gateway address as shown below. Remember, the CARD must have a different MAC and IP address than any of the streams. Once addresses are entered, click **OK**.

Layer 3 Setup - Port	17 ML-7710 100Mb Mul	ti-Layer Eth 🔀
MAC Address:	00 00 00 00 00 17	OK
IP Address:	147.072.001.003	Cancel
<u>N</u> etmask:	255.255.000.000	
<u>G</u> ateway:	147.072.001.001	
Ping <u>T</u> arget:	000.000.000.000	
Ping frequency:	0 (1/10th seconds)	
SNMP frequency:	0 (1/10th seconds)	
<u>RIP frequency:</u>	(1/10th seconds)	
Inter ARP <u>G</u> ap:	9.6 💌 uSec	V
Reply to all <u>A</u> R	P requests	

Stream on port 17: Click the port 17 SmartCard and select **Transmit Setup**. Highlight the default stream and **Delete**. Click the **Add VTEs** button to add a stream onto port 16. Select **IP** from the Protocol pulldown menu, and click **OK**. In the Protocol Editor, toggle the View menu **Concise/Detail** command to see more fields. Enter the necessary addresses. Be sure to press the Enter key after each text entry to save it. Click the Close button to exit the window.

Note that Source and Destination IPs are mirrors of the settings on port 16.

S Protoco	Editor (IP)							_ O X
<u>F</u> ile <u>E</u> dit	⊻iew <u>H</u> elp							
IP	MAC Dest	MAC Src	ToS	ID	TTL	prot	SourceIP	DestIP
1	00 00 a5 e3 91 00	00 00 00 00 01 17	0	0	10	4	147.072.001.010	146.072.001.010

6. When complete, send Layer 3 ARPs from each card by clicking on each SmartCard and selecting Layer 3 Send ARP Requests. *This is necessary to learn the MAC destination addresses.*

Alternatively, you can select Actions menu **Layer 3 ARP** command to send ARP requests from ALL configured ports at one time.

WATCH THE SMARTBITS HARDWARE or **SmartWindow front panel LEDs**: As each SmartCard transmits an ARP request, look for a brief green LED for transmit and receive. If you do not see a momentary green LED light for receive, the ARP response was not received.

For many streams and ARPs, perform the ARP Exchange Times test (Procedure 10) to ensure that ARPs for all streams were received.

Procedure 4: Pinging to Check Links

Before transmitting traffic, it is worthwhile to ping the SmartCard IP addresses to confirm that the links to the DUT are working properly.

To ping each SmartCard:

1. Click on port 16, select Layer 3 Setup, enter the target IP address for port 17, and set the ping frequency to 10:

Layer 3 Setup - Port	16 ML-7710 100Mb Multi	i-Layer Eth 🗵
MAC Address:	00 00 00 00 00 16	OK
IP Address:	146.072.001.003	Cancel
<u>N</u> etmask:	255.255.000.000	
<u>G</u> ateway:	146.072.001.001	
Ping <u>T</u> arget:	147.072.001.000	
Ping frequency:	10 (1/10th seconds)	
SNMP frequency:	0 (1/10th seconds)	
<u>B</u> IP frequency:	0 (1/10th seconds)	
Inter ARP <u>G</u> ap:	9.6 🔽 uSec	-
Reply to all <u>A</u> RP re	quests	

Click OK.

2. Click on port 17, select Layer 3 Setup, enter the target IP address for port 16, and set the ping frequency to 10:

Layer 3 Setup - Por	t 17 ML-7710 100Mb Mult	ii-Layer Eth 🗵
MAC Address:	00 00 00 00 00 17	OK
IP Address:	147.072.001.003	Cancel
<u>N</u> etmask:	255.255.000.000	
<u>G</u> ateway:	147.072.001.001	
Ping <u>T</u> arget:	146.072.001.001	
Ping frequency:	10 (1/10th seconds)	
<u>SNMP frequency:</u>	0 (1/10th seconds)	
<u>BIP frequency:</u>	0 (1/10th seconds)	
Inter ARP <u>G</u> ap:	9.6 💌 uSec	-
Reply to all <u>A</u> RP r	equests	

Click OK.

- 3. To view counters for pings, click Actions menu **SmartCounters** command, then select the File menu **New Counter Window** command. Highlight ports 16 and 17.
- 4. Click on the **Start** command on each SmartCard and watch SmartCounters for the ping counters.
- 5. After the pinging is performed, go back to the Layer 3 Setup of each card to turn off pinging by setting the Ping Frequency to **O**. This will keep other traffic results more clearly defined.

Check SmartCard Speed Setting

If the link is still not active, check that the correct speed is selected (default is 10Mbps and you may require 100Mbps). To reset the SmartCard speed, click on each card, and select **100Mbps** on the main menu of each SmartCard.

Procedure 5: Transmitting Traffic and Viewing Counters

Now you are ready to transmit traffic and view counters.

1. Click on the port 16 SmartCard, and select **Display Counters** to view results during transmission. Repeat for the port 17 SmartCard.

Or select Actions menu **SmartCounters** command, then select File menu **New Counter Window** to view all counters. You can save SmartCounters to an excel spreadsheet file with the File menu **Save As** command.

2. Click **Start** on transmitting SmartCard to start transmission. For bidirectional transmission, click **Start** on both SmartCards.

PART III: Setting Multiple Streams per Card & Displaying Counters

This section presents detailed procedures for creating and using multiple streams on two ML-7710 SmartCards, and then producing counters and test results:

Procedure 6: Setting Up 20 Streams per ML-7710 SmartCard

Procedure 7: Creating SMB Group, Transmitting Traffic, and Viewing Counters

Procedure 6: Setting Up 20 Streams per ML-7710 SmartCard

The following procedure describes how to quickly set up 20 consecutive streams from each SmartCard, with varied IP and MAC addresses as well as with varied packet lengths. If desired, you can also assign different protocols and add up to 1000 streams to further mimic real world networks.

- 1. Open SmartWindow.
- Click on ML-7710 port 5. Click the Layer 3 Mode command. For Port 5: Click the card again and select the Layer 3 Setup command. Enter the gateway IP address for port 5: 192.005.001.254. Click OK.

NOTE The IP ADDRESS for each port is OPTIONAL and is added here only to allow for pinging.

Layer 3 Setup - Po	rt 05 ML-7710 100Mb Mul	ti-Layer Eth 💌
MAC Address:	00 00 00 00 00 04	ОК
IP Address:	192.005.001.025	Cancel
<u>N</u> etmask:	255.255.255.000	
<u>G</u> ateway:	192.005.001.254	
Ping <u>T</u> arget:	000.000.000.000	
Ping frequency:	0 (1/10th seconds)	
SNMP frequencur	0 (1/10th seconds)	

 Click on ML-7710 port 6. Click the Layer 3 Mode command. For Port 6: Click the card again and select the Layer 3 Setup command. Enter the gateway IP address for port 6: 192.006.001.254. Click OK.

Layer 3 Setup - Por	t 06 ML-7710 100Mb Mul	ti-Layer Eth 🔀
MAC Address:	00 00 00 00 00 05	ОК
IP Address:	192.006.001.026	Cancel
<u>N</u> etmask:	255.255.255.000	
<u>G</u> ateway:	192.006.001.254	
Ping <u>T</u> arget:	000.000.000.000	
Ping frequency:	0 (1/10th seconds)	
SNMP frequencu:	0 (1/10th seconds)	

- 4. Click on the port 5 SmartCard and select **Transmit Setup**. Highlight the default stream and click the **Delete** button. It is helpful to delete the generic stream and then enter all new streams at one time.
- Now click Add VTEs button to add 20 streams: Enter 20 VTEs. Click the Randomized radio button for Frame Length. Select IP for the Protocol.

NOTE We recommend that you start with **Fixed** frame lengths to set initial testing benchmarks, then try randomized frame lengths in contrast.

Add VirtualTransmitEngine - Port 05 ML-7710 100M 💌									
<u>⊻</u> TEs: 20	OK								
Frame Length	Cancel								
C Fixed 60									
Randomized									
Protocol:									

- 6. Click OK. The Protocol Editor appears with default addresses for 20 streams (see next page).
- 7. Edit the first stream as follows:

Source IP address for the first stream: 192.005.001.005 Destination IP address for the stream (which is a port 6 VTE stream): 192.006.001.006

Then highlight each column (the SourceIP, then DestIP) individually, right-click on the first entry, select the **Copy Down** command, then select the **Fill Increment 0.0.0.x.** The Edited Screen on the next page shows the last column highlighted after these commands have been applied.

Keep MAC address defaults. SmartBits handles MAC addresses internally.

en P	rotocol Editor (IP)				
File	Edit View Help				
- IP	MAC Dest	MAC Src	SourceIP	DestIP	To change defaults:
1	ff ff ff ff ff ff	00 00 00 00 00 00 05	198.019.001.002	198.019.001.001	and DestIP.
2	ff ff ff ff ff ff	00 00 00 00 00 00 05	198.019.001.002	198.019.001.001	
3	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	2. Highlight SourcelP
4	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	Column, right-click,
5	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	Fill Increment 0.0.0.x.
6	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	
7	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	3. Highlight DestlP
8	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	column, right-click,
9	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	Copy Down,
10	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	Fill Increment 0.0.0.x.
11	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	(MAC destinations are filled
12	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	by ARP exchange.)
13	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	
14	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	
15	ff ff ff ff ff ff	00 00 00 00 00 00 05	198.019.001.002	198.019.001.001	Default Screen
16	ff ff ff ff ff ff	00 00 00 00 00 00 05	198.019.001.002	198.019.001.001	
17	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	
18	ff ff ff ff ff ff	00 00 00 00 00 00 05	198.019.001.002	198.019.001.001	
19	ff ff ff ff ff ff	00 00 00 00 00 05	198.019.001.002	198.019.001.001	
	Router port MAC	Stream	Stream Sourc	e Stream Destin	ation
	address	MAC addr	IP address	IP address	

	_ 🗆 ×	
I		
SourceIP	DestIP	Edited Screen
192.005.001.005	192.006 001.006	
192.005. 401.006	192.006.001.007	REQUIRED. User-specified entries
192.005.001.007	192.006.001.008	are required for SourceIP and DestIP.
192.005.001.008	192.006.001.009	NOTE You can optionally change the
192.005.001.009	192.006.001.010	Mac Src addresses (using the same
192.005.001.010	192.006.001.011	the DUT thinks that the streams came
192.005.001.011	192.006.001.012	from 20 different devices.
192.005.001.012	192.006.001.013	This minimum configuration indicates
192.005.001.013	192 Cu <u>t</u>	that the streams are coming from the
192.005.001.014	192 <u>С</u> ору	same physical device.
192.005.001.015	192 <u>P</u> aste	
192.005.001.016	192 - Corry Diel	1.
192.005.001.017	192 Copy High	nt
192.005.001.018	192 Copy D <u>o</u> v	wn
192.005.001.019	192 Fill Increm	nent VUUUX
192.005.001.020	192 Fill <u>D</u> ecrei	ment V.U.X.U
192.005.001.021	192 Fill Rando	o <u>m</u> ▶ U.x.U.U
192.005.001.022	192.006.001.023	X.U.U.U
192.005.001.023	192.006.001.024	x.x.x.x
192.005.001.024	192.006.001.025	

How to Test Layer 3 Switches

Len MAC Dst	MAC Src		Net Src	Net Dst	ABP(µs)	Gateway	- Selected VTEs
2 1 61 HHHHH	f 00 00 00 00 00 00 05 £ 00 00 00 00 00 00 05	IP	192.005.001.005	192.006.001.006 192.006.001.007	default default	192,005	A <u>c</u> tivate
2 3 341 ff ff ff ff ff 4 1235 ff ff ff ff ff	f 00 00 00 00 00 00 00 05 f 00 00 00 00 00 00 05 f 00 00 00 00 00 00 05	IP IP	192.005.001.007	192.006.001.008	default default	192.005.0	D <u>e</u> activate
2 5 910 ###### 2 6 757 ###### 2 7 569 #######	f 00 00 00 00 00 00 05 f 00 00 00 00 00 00 05 f 00 00 00 00 00 00 05	IP IP IP	192.005.001.009 192.005.001.010 192.005.001.010	192.006.001.003 192.006.001.010 192.006.001.011 192.006.001.012	default default default	192.005.i 192.005.i 192.005.i	Delete
2 8 1362 ff ff ff ff ff 2 9 1256 ff ff ff ff ff	'f 00 00 00 00 00 00 05 'f 00 00 00 00 00 00 05	IP IP	192.005.001.012 192.005.001.013	192.006.001.013 192.006.001.014	default default	192.005.0 192.005.0	Add VTEs
2 10 1145 ###### 2 11 313 ###### 2 12 1308 ####### 2 13 1093 #######	if 00 00 00 00 00 00 05 if 00 00 00 00 00 00 05 if 00 00 00 00 00 00 05 if 00 00 00 00 00 00 05	IP IP IP IP	192.005.001.014 192.005.001.015 192.005.001.016 192.005.001.017	192.006.001.015 192.006.001.016 192.006.001.017 192.006.001.018	default default default default	192.005.0 192.005.0 192.005.0 192.005.0	Edit Settings for
2 14 806 fffffffff 2 15 502 ffffffffff 2 16 81 fffffffff 2 17 192 ffffffffff 2 18 589 ffffffffff 2 19 274 fffffffffffff 2 20 301 ffffffffff	f 00 00 00 00 00 00 05 f 00 00 00 00 00 00 00 05	IP IP IP IP IP IP IP IP	192.005.001.018 192.005.001.019 192.005.001.020 192.005.001.020 192.005.001.022 192.005.001.023 192.005.001.023	192.006.001.019 192.006.001.020 192.006.001.021 192.006.001.022 192.006.001.023 192.006.001.024 192.006.001.024	default default default default default default default	192.005.1 192.005.1 192.005.1 192.005.1 192.005.1 192.005.1 192.005.1	Selected VTEs

8. Click the Close button and view the 20 streams for port 5 in the Transmit Setup window. Click OK.

9. Repeat above steps 1 through 7 for **port 6** using the following IP addresses. Use the port 5 addresses for Destination IP addresses.

 Port 6 Stream IP addresses:
 192.006.001.006
 through 192.006.001.025

 Gateway for Port 6:
 192.006.001.254
 192.006.001.254

- Click Actions menu Layer 3 ARP to send ARP requests to all configured ports. To check that all ports have sent and received ARPs, you can perform the ARP Exchange Times test (see Procedure 10).
- 11. To confirm that the SmartBits links to the DUT are working properly, ping the port IP addresses as shown in Procedure 4.

Procedure 7: Creating an SMB Group, Transmitting Traffic, & Viewing Counters

1. It is handy to start all transmissions of multiple SmartCards at the same time. To do this, click on SMB Group and select **Set Group**.

Click the **None** button to clear all ports, then click on port 5 and port 6 boxes for the group. Then click **OK**.

SmartBits MultiPort Selection	×
	ОК
100Mb Fast SmartCards	Cancel

- To see results of multiple SmartCards on a single screen, click the Actions menu SmartCounters command. Then select the File menu New Counter Window command. Highlight the port numbers whose counters you wish to view (here ports 5 and 6). Keep this window open.
- 3. Click View menu **Show** command and check the boxes for rows and columns.
- To define a custom indicator, select an empty cell to the right of the cells where data will be entered. Left-click inside this cell, then insert your math equation (press F2 twice) using spreadsheet conventions.
- 5. Now click on the **Start** command on the SMB Group and watch the SmartCounters.

Part IV: Detailed Tracking and Statistical Results

This section provides procedures which demonstrate latency and sequence tracking tests, raw packet results, and data capture.

Procedure 8: Performing Latency and Sequence Tracking Tests

Procedure 9: Inspecting Raw Packets

Procedure 10: Using Triggers and Capture

Procedure 8: Performing Latency and Sequence Tracking Tests

The Latency and Sequence Tracking tests provide valuable statistical data for performance analysis of the Layer 3 switch/router.

T

Before running these tests, confirm that your links are alive.

Note that the *Link* on the SmartCard indicates an active link to the DUT.

🛄 Smar	t₩ir	ndow	• - L3	3roul	ter.p	rf			/											_ 🗆	X
<u>F</u> ile <u>E</u> d	it <u>A</u>	ction	s <u>O</u>	ption	s Si	mart <u>B</u>	lits #	Е <u>Т</u>	/1000) <u>H</u>	elp										
Transmit Status	0	0	0	0	0	0	0	ø	0	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	S
Trigger Collision	$^{\circ}$	$^{\circ}$	0	0	0	0	0	$^{\circ}$	0	0	0	$^{\circ}$	$^{\circ}$	0	$^{\circ}$	0	0	0	0	0	В
Receive, Cro Error	0	0	0	0	0	0	6	0	0	0	0	$^{\circ}$	0	0	0	0	0	0	0	0	G R
Mode→ Speed→ Link→	Half <i>100</i>	Half <i>100</i>	Half <i>100</i>	Half <i>100</i>	Half 199	Hal/ #88	Half <i>100</i>	U													
Card Type	<u>7710</u> 01	77 <u>10</u> 02	<u>7710</u> 03	<u>7710</u> 04	7710 05	7710	77 <u>10</u> 07	<u>7710</u> 08	<u>7710</u> 09	<u>7710</u> 10	<u>7710</u> 11	77 <u>10</u> 12	77 <u>10</u> 13	<u>7710</u> 14	77 <u>10</u> 15	77 <u>10</u> 16	<u>7710</u> 17	<u>7710</u> 18	<u>7710</u> 19	77 <u>10</u> 20	Р #1
8	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start	Start
len:663,M	IAC:fi	ffffffff	fff<0C	00000	0000	06,0	000								10	hLine	T	CP S	erial#	:865	3

In this example, the following parameters are set up with the 20 streams for ports 5 and 6 set up earlier:

- Transmit Setup: Continuous Mode, 9.6 usec interpacket gap for 100% utilization
- Frame length for all streams: 60
- 1. Select Actions menu Layer 3 Send ARP Requests.
- 2. Click **Start** on port 5 SmartCard. Note the green transmit LED on port 5 and the green receive LED on port 6.
- 3. To see data from the transmitted traffic from port 5 to port 6, click Options menu Layer 3 Tests.

Sequence Tracking

4. Select Test Type Sequence Tracking test, select checkboxes for Tx Port 05 and Rx Port 06, then click Start button at the bottom of the window. After several seconds, click Stop button. Then click Results button and select the receive card, port 06.

Total frames received per stream

Total frames received per stream in correct sequence

									Total fra	mes lost	per strea	am
												=
Test Type: Sequence Tracking		Seque	ence T	acking -	12/3/	1998 1	12:35:0	6 - Po	rt 06 ML-7	710 - (un	_ 🗆 ×	1
			Port	VTE	Frame	:	InSeq		Duplicate	Lost -	<u> </u>	1
Limits:		1	5	1	▼ 2	291932	29	91893		0		
		2	5	2		291918	2	91861		0	14	
		3	5	3	2	291913	2	91849		0	19	
		4	5	4		291890	2	91795		0	42	
		5	5	5	2	291838	2	91731		0	94	
		6	5	6	2	291932	29	91895		0	0	
		- 7	5	7	2	291750	2	91644		0	182	
Ty Ports		8	5	8	2	291739	2	91632		0	193	
03 ML-7710 01 ML-7710		9	5	9	1	291644	2	91535		0	288	
04 ML-7710 02 ML-7710		10	5	10	2	291628	2	91522		0	304	
□ 05 ML-7710 □ 03 ML-7710		11	5	11	1	291510	29	91403		0	422	
		12	5	12	1	291487	2	91391		0	445	
08 ML-7710 06 ML-7710		13	5	13	i i	291358	2	91250		0	574	
09 ML-7710 07 ML-7710		14	5	14	1	291346	2	91237		0	586	
11 U 10 ML-7/10 U 08 ML-7/10		15	5	15		291342	2	91231		0	590	
12 ML-7710 10 ML-7710		16	5	16		291218	29	91109		0	714	
13 ML-7710 11 ML-7710		17	5	17		291194	2	91096		0	737	
14 ML-7710 12 ML-7710		18	5	18		291196	29	91088		0	735	
16 ML-7710		19	5	19		291101	2	90990		0	830	
0 17 ML-7710 0 15 ML-7710		20	5	20		291090	2	90983		0	841 💌	1
□ 18 ML-7710 □ 16 ML-7710	•										•	

5. To set a lighter load and determine the rate at which there is little or no packet loss, click the port 5 SmartCard, select Transmit Setup, and click This Port button. From the pulldown menu for Interpacket Gap, select % Utilization and enter 90 in the Rate box. Click OK. Click OK again and close the Transmit Setup window. Click Start on the port 5 SmartCard to transmit traffic and view the Sequence Tracking.

Transmit Setup - Port 05 ML-77	10 100Mb Multi-Layer Ethe X					
	Custom					
_ Interpacket <u>G</u> ap	VFD3 Setup (Protocol)					
Rate: 90	State: Custom					
Units: %Utilization	Value: Edit					
<u> </u>	Byte Offset					
	12					
Alignment I Symbol	Adjacent to VFD2					
Collision-	# of Packets Length(bytes)					
# of Packets:						
Layer 3	OK Cancel					

6. After a few more test runs, the 80% load produced the following sequence tracking. You may wish to repeat this test a number of times over a period of time to track the consistency of the router and potential interruptions during the same and different loads, with increased or decreased number of streams, with varied frame lengths (either fixed or random).

	🌉 Layer 3 Tests -	[Sequence Tr	acking - 1	2/3/199	8 13:	21:54 - P	ort 06 ML-77	710 - (untitleo]]	
	🧱 <u>F</u> ile <u>E</u> dit <u>A</u> ctio	ons <u>V</u> iew Form	a <u>t W</u> indo	w <u>H</u> elp						
Į	≥∎⊜ <u>x</u> ∎			₽.			0			
ſ	Test Turney				Port	VTE	Frames	InSeq	Duplicate	Lost
I	Seque	ence Fracking		1	5	1	50479	50479	0	0
I	Limits:			2	5	2	50479	50479	0	0
I				3	5	3	50479	50479	0	0
I				4	5	4	50479	50479	0	0
I				5	5	5	50479	50479	0	0
I				6	5	6	50479	50479	0	0
I				7	5	7	50479	50479	0	0
I				8	5	8	50479	50479	0	0
I				9	5	9	50479	50479	0	0
I	Tx Ports	Rx Ports		10	5	10	50479	50479	0	0
I		U U1 ML-771		11	5	11	50479	50479	0	0
I	03 ML-7710	02 ML-771	5 IIL	12	5	12	50479	50479	0	0
I	🗆 04 ML-7710 👘	🗌 🗖 04 ML-771		13	5	13	50479	50479	0	0
I	05 ML-7710	05 ML-771	S III	14	5	14	50479	50479	0	0
I		06 ML-771	í	15	5	15	50479	50479	0	0
I	08 ML-7710	08 ML-771	5	16	5	16	50479	50479	0	0
I	09 ML-7710	09 ML-771		17	5	17	50479	50479	0	0
I	1 10 ML-7710	1 10 ML-771	i III	18	5	18	50479	50479	0	0
I	12 ML-7710	12 ML-771	5	19	5	19	50478	50478	0	0
	13 ML-7710	13 ML-771	2	20	5	20	50478	50478	0	0
I	1 14 ML-7710	14 ML-771	2							
		16 ML-771	í 💷 🗆							

After approximately 1 second, the latency dropped to a reasonable level. A possible cause of this change is the use of a Fast Path mechanism.

The remaining tests are run at the 80% utilization rate with the same switch.

Latency Tests

7. Select Test Type Latency over Time. Click Start button, run for a few seconds, then click the Stop bottom. Click Results button and select the receive port 06.

	Test Type: Latence	y over time 💌	🛄 Laten	cy over time	(in microseco	nds) - 12/3/	1998 14:09:3	9 - Port 06 MI
	· · · · ·			MilliSec	Frames	Minimum	Maximum	Average
1	Latency Lime:		1	20	261	13.2	12233.3	203.4
I	Milliseconds per Interv	/al	2	30	633	13.2	21217.3	151.0
I		10	3	40	1011	13.2	32351.6	204.5
I			4	50	1282	13.3	41902.4	483.6
I			5	60	1288	13.4	52091.1	674.3
I			6	70	1286	13.4	61696.5	769.6
I			7	80	1286	13.4	71310.3	896.6
I	Tx Ports	Bx Ports	8	90	1287	13.4	81475.5	1086.2
I	01 ML-7710	01 ML-7710	9	100	1286	13.4	91136.1	1158.7
I	02 ML-7710	02 ML-7710	10	110	1287	13.4	101396.1	1364.0
I	03 ML-7710	1 L1 U3 ML-7710	11	120	1286	13.4	110985.8	1421.3
I	2 05 ML-7710	05 ML-7710	12	130	1286	13.4	120678.5	1549.6
I	06 ML-7710	2 06 ML-7710	13	140	1286	13.4	130638.1	1676.5
I		0/ ML-7710	14	150	1287	13.4	140551.4	1912.7
I	09 ML-7710	09 ML-7710	15	160	1286	13.4	150196.2	1939.2
1	1 10 MI 7710	1 10 MI 7710	10	170	1007	10.4	100007.0	0100.0

An ideal switch would slightly increase latency for a short time; latency would remain constant for most of the test, then decrease as the ML-7710 stops transmitting. An increasing latency from start to finish indicates that the switch cannot handle the load for long sustained periods. As the latency

🛄 Laten	cy over time	(in microseco	nds) - 12/3/	1998 14:09:3	9 - Port 06 MI
	MilliSec	Frames	Minimum	Maximum	Average
107	1080	1286	13.4	1044798.1	14579.9
108	1090	1287	13.4	1053946.6	13878.2
109	1100	1272	13.4	1055081.4	2501.5
110	1110	1269	13.4	14.2	13.7
111	1120	1269	13.4	14.2	13.8
112	1130	1269	13.4	14.1	13.7
113	1140	1269	13.4	14.2	13.8
114	1150	1269	13.4	14.1	13.7
115	1160	1269	13.4	14.2	13.7
116	1170	1269	13.4	14.2	13.8
117	1180	1269	13.4	14.1	13.7
118	1190	1270	13.4	14.2	13.8
119	1200	1268	13.4	14.1	13.7
120	1210	1270	13.4	14.2	13.8
121	1220	1269	13.4	14.2	13.7
122	1230	1269	13.4	14.2	13.8
123	1240	1269	13.4	14.2	13.8
124	1250	1269	13.4	14.2	13.7
125	1260	1269	13.4	14.2	13.8
126	1270	1269	13.4	14.1	13.7

increases, the switch buffers more frames. A spike in the latency indicates a problem with buffer scheduling and warrants more investigation.

After approximately 1 second, the latency dropped to a reasonable level. A possible cause of this change is the use of a Fast Path mechanism.

8. Here we now take a closer look at the Latency per VTE. Continue to send traffic. Select Test Type Latency per VTE. Click Start button, run for a few seconds, then click the Stop bottom. Click Results button and select the receive port 06. Here again the spikes in latency are apparent.

Test Type: (16)Lat	rencu per VTE	7 🛄 (16)L	atency	per VTE	(in microsec	onds) - 12/3/	/1998 14:17:-	4 <u>- 🗆 ×</u>
		┛│	Port	VTE	Frames	Minimum	Maximum	Average 🔺
Limits:			5	1	17399	13.3	1951.8	178
			2 5	2	17399	13.5	4299.8	210
			3 5	3	17399	13.5	2362.4	400
			4 5	4	17399	13.5	4041.3	676
			5 5	5	17398	13.5	5174.5	950
			6 5	6	17393	13.5	5734.2	952
			7 5	7	17388	13.5	5683.1	1192
Ty Ports	By Ports	a _ ;	3 5	8	17386	13.5	94.4	1778
01 ML-7710	01 ML-7710		9 5	9	17382	13.5	4414.4	2053
02 ML-7710	02 ML-7710	1) 5	10	17381	13.5	4812.8	2515
03 ML-7710	03 ML-7710	1	5	11	17381	13.5	4706.6	3048
1 04 ML-7710		1:	2 5	12	17382	13.5	5782.7	3661
06 ML-7710	2 06 ML-7710	1:	3 5	13	17381	13.5	2541.4	4012
07 ML-7710	07 ML-7710	1.	4 5	14	17380	13.5	2541.8	4600
08 ML-7710	08 ML-7710	1!	5 5	15	17376	13.5	6245.5	5268
0 10 ML-7710	0 10 ML-7710	1	6 5	16	17363	13.5	637.4	5189
□ 11 ML-7710	11 ML-7710	1	7 5	17	17351	13.5	1133.6	5125
12 ML-7710	12 ML-7710	1	3 5	18	17342	13.5	1685.5	5227
14 ML-7710	14 ML-7710	1	9 5	19	17330	13.5	2591.6	5202
15 ML-7710	15 ML-7710	2) 5	20	17325	13.5	2686.1	5241

The 20 streams are summarized with the minimum, maximum, and average for each stream. The latency range is relatively wide.

9. With the traffic still running, select Test Type Latency Distribution. Click Start button, run for a few seconds, then click the **Stop** bottom. Click **Results** button and select the receive port 06. Here the latency has dropped dramatically, to the later low level shown in step 7, so that the 13.4 to 14.2 msec shows consistently under the 20 msec time interval.

🋄 (16)La	atency distrib	ution (in micro	oseconds) - 1	2/3/1998 14	l:22:54 - Por	t 06 ML-7710) - LATDIST.)	XLS	-
	Frames	<=0.1	<=0.2	<=0.5	<=1.0	<=2.0	<=5.0	<=10.0	<=20.0
1	1309085	0	0	0	0	0	0	0	1309034
2	1309081	0	0	0	0	0	0	0	1309011
3	1309077	0	0	0	0	0	0	0	1308990
4	1309062	0	0	0	0	0	0	0	1308931
5	1309056	0	0	0	0	0	0	0	1308910
6	1309079	0	0	0	0	0	0	0	1308987
7	1308990	0	0	0	0	0	0	0	1308816
8	1308915	0	0	0	0	0	0	0	1308732
9	1308897	0	0	0	0	0	0	0	1308711
10	1308884	0	0	0	0	0	0	0	1308690
11	1308779	0	0	0	0	0	0	0	1308577
12	1308776	0	0	0	0	0	0	0	1308561
13	1308664	0	0	0	0	0	0	0	1308437
14	1308654	0	0	0	0	0	0	0	1308418
15	1308642	0	0	0	0	0	0	0	1308399
16	1308553	0	0	0	0	0	0	0	1308304
17	1308534	0	0	0	0	0	0	0	1308286
18	1308519	0	0	0	0	0	0	0	1308268
19	1308501	0	0	0	0	0	0	0	1308250
20	1308487	0	0	0	0	0	0	0	1308238

Procedure 9: Inspecting Raw Packets

To look closely at the content of the last 131,000 packets received, you use the Options menu Layer 3 Tests command and the Test Type **Raw Packet Tags**.

1. Here you may wish to try full wire rate in burst mode. To do this, click the port 6 SmartCard, select Transmit Setup, and click **This Port** button. Set mode to Single Burst and Interpacket Gap to 100% utilization which will create a 10-second burst at full wire rate. Click **OK**.

Transmit Setup - Port 05 ML-77	10 100Mb Multi-Layer Ethe 🔀
_ <u>M</u> ode	Background
Single Burst 💽	Custom
Count: 1488095	
9.999 Seconds	Edit
Interpacket <u>G</u> ap	VFD3 Setup (Protocol)
Rate: 100	State: Custom 💌
Units: XUtilization	Value: Edit
Error Generation	Byte Offset
	12
Alignment Symbol	Adjacent to VFD2
<u> ⊂</u> ollision	# of Packets Length(bytes)
# of Packets:	
Layer 3	OK Cancel

Note that the two active ML-7710 SmartCards show the live Link status and the Burst mode.

🛄 Smai	rt₩ir	ndow	• - L3	3roul	ter.p	rf														_ 🗆	X
<u>F</u> ile <u>E</u> d	lit <u>A</u>	ction	s <u>O</u>	ption	s Si	mart <u>B</u>	lits #	Е <u>Т</u>	-1000) <u>H</u>	elp										
Transmit Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$^{\circ}$	0	0	0	Σ
Trigger Collision																					
Receive Cro Error																					
Mode→ Speed→ Link→	Half	Half	Half	Half Ø	' lalf <i>100</i>	Half <i>100</i>	U														
Card Type	Bui	rst Mo	ode	10	7710	7710	7710	7710	7710	7710	7710	7710	7710	7710	7710	7710	7710	7710	7710	7710	Р
Ω	0	02	03	L04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	#1
œ	Start	Start	Start	Start	Burst	Burst	Start	Burst													
len:663,N	AC:fl	ffffffff	fff<00	00000	00000	0,00	000								10	nLine	T	CP S	erial#	:865	8

- 2. Click the **Start** button on the port 5 SmartCard.
- 3. Now select Options menu Layer 3 Tests command and the Test Type Raw Packet Tags.
- 4. Click the Start, Stop, and Results buttons to view raw packets in detail.

Procedure 10: Viewing ARP Response Times

It can be helpful to look at ARP response times which may vary with traffic load, time of day, and the characteristics of each switch. The ARP response times also confirm that all ports are sending and receiving ARPs properly.

To perform an ARP exchange and view the ARP response times:

- 1. Select the Options menu Layer 3 Tests command.
- 2. From the Test Type pulldown menu, select ARP exchange times.
- 3. Click on ports 16 and 17 for Tx and Rx Ports. Each port will send ARPs to the DUT and receive an response time for each stream.

Laper 3 Tests	
Elle Edil Actions Yew Format Window Help	from the second second
	I BED O
Test Type: Will and a second second second	
Landar	
TxPate A PixPate A	
04 ML-7710	
0.06ML-7710 0.06ML-7710	
08 ML-7710 08 ML-7710	
010 ML-7710 00 ML-7710	
011 ML 7710 011 ML 7710	
013 ML-7710 013 ML-7710	
01696-7710 01696-7710 01596-7710 01596-7710	
E 16 ML-7710 E 16 ML-7710 E 17 ML-7710 E 17 ML-7710	
□ 18 ML-7710 • □ 18 ML-7710 •	
Stat Bendta	and the second second
Layer 3 Tests	TextIde

- 4. Click the Start button. After a few seconds, click the Stop button.
- 5. Click the **Results** button and select port 16 results. Then click port 17 results. A separate results window appears for each port.

Procedure 11: Using Triggers and Capture

A trigger is a pattern counting tool which "triggers" a count of any packets holding a specific pattern located inside any of the packets received by the receive SmartCard. You can track one or two triggers per receiving SmartCard in any combination (singly or together).

The pattern is defined:

- in the transmitting SmartCard
- in the Trigger Setup of the receiving SmartCard

To see the trigger count, you send traffic, click the receive SmartCard, select the **Display Counters** command, and check the Trig counters.

To view details of each triggered packet, you can use one or both of the following methods:

- Select the Options menu Layer 3 Tests command, select the Test Type Raw Packets Tags, send traffic, and run the test (click Start, Stop, and Results buttons).
- Click the receive SmartCard, select the **Capture** command, select the **Capture Packets with Rx Triggers**, and send traffic to be captured.

Setting Triggers and Displaying Counters

In the following example, the first stream of port 5 targets the first stream of port 6 (IP address 192.006.001.006 which has the MAC source address 00000002016). In this case, no custom transmit setup is necessary.

	SVirtualTransmitEngine (VTE) Setup - Port 05 ML-7710 100Mb Multi-Layer Ethernet TP	
	Select the VTEs. Use the 'Ctrl' key for multiple selections.	
Port 5 SmartCard	# Len MAC Dst MAC Src Type Net Src Net Dst ARP(μs) Gal = OPE	ecu
	☑ 1 60 ff ff ff ff ff ff 00 00 00 00 00 06 IP 192.005.001.006 192.006.001.006 9.6 192	
	■ 2 60 ###########00 00 00 00 00 07 IP 192.005.001.007 192.006.001.007 9.6 192 I —	_
_	Bytes identified in Receive Trigger Setup	
	🖫 VirtualTransmitEngine (VTE) Setup - Port 06 ML-7710 100Mb Mukir-Layer Ethernet TP	
Port 6 SmartCard	Select the VTEs. Use the 'Ctrl' key for multiple selections.	
	# Len MAC Dst MAC Src 🔽 Type Net Src 🖌 Net Dst ARP(μs) Gateway -	
	■ 1 60 ff ff ff ff ff 00 00 00 00 20 06 IP 192.006 001.006 192.005 001 005 9.6 192.006	
	I 2 301 mmmmmm 00 00 00 00 00 20 071P 192.006.001.007 192.005.001.005 9.6 192.006. I 3 1497 ff ff ff ff ff ff 00 00 00 00 20 08 IP 192.006.001.008 192.005.001.007 9.6 192.006. □	

- 1. Click on the port 6 SmartCard and select the Trigger Setup command.
- 2. Keep the Offset of 0 (for the MAC Destination Address) and the Byte Length of 6.

3. Enter the last 2 bytes of trigger 1: 20 06

- 4. Click OK.
- 5. Click the port 6 SmartCard and select the **Display Counters** command.
- 6. Click **Start** on the port 5 SmartCard to send traffic. Watch the **Trig 1** counters.

Counters - Port 06 ML-7710 100Mb Multi-Layer Ethernet TP 🔀												
✓ Show Events ✓ Show <u>R</u> ates	Events	Rates										
Tmt. Packets	0	0										
Rov. Packets	10,351,160	119,049										
Collisions	0	0										
CRC Errors	0	0										
Align. Errors 📃	0	0										
OverSize 💌	0	0										
Frag/UnderSize 🗾	0	0										
Rx Bytes 💌	662,474,240	7,619,136										
Trig 1 💌	517,574	5,952										
Tx Packets 💌	0	0										
Tags 💌	10,351,160	0										
Tx from stack	0	0										
	ters Close											

Since Trigger 1 represents stream 1 which is 1/20th of the total traffic sent, the Trig 1 count of **517,574** is close to the expected count of 517,558. The extra triggers may result from a number of causes, including duplicate packets sent, management packets, or counters not cleared.

Capturing Packets

1. To capture packets (up to a maximum of approximately 500 packets) and look at the packet content, click the receive SmartCard, and select the Capture command. Keep the setting for All Packets.

2. Click the Start button on the transmitting SmartCard, and watch the Capture window. Note that all triggers contain the Netcom Systems signature symbol S but that the stream trigger (T) packets are distinguished from all other stream packets.

📖 Ca	pture - Port 0	6 ML-77	10 100M	b Multi-Layer Eth	ernet TP			_ 🗆 ×
<u>F</u> ile	<u>E</u> dit <u>C</u> apture	<u>V</u> iew Fo	orma <u>t H</u> e	lp				
	Delta(µSe	Status	Length	MAC dest	MAC sr	C	type	data 🔺
1	0	S	64	00 00 00 00 20 ОЬ	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
2	8.5	S	64	00 00 00 00 20 Oc	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
3	8	S	64	00 00 00 00 20 0d	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
4	8.6	S	64	00 00 00 00 20 0e	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
5	8.5	S	64	00 00 00 00 20 Of	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
6	8.7	S	64	00 00 00 00 20 10	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
	8	S	64	00 00 00 00 20 11	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
8	8.4	S	64	00 00 00 00 20 12	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
9	8.6	S	64	00 00 00 00 20 13	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
10	8.4	S	64	00 00 00 00 20 14	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
11	8.2	S	64	00 00 00 00 20 15	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
12	8.5	S	64	00 00 00 00 20 16	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
13	8.5	S	64	00 00 00 00 20 17	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
14	8.5	S	64	00 00 00 00 20 18	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
15	8.1	S	64	00 00 00 00 20 19	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e1 00 00 3f 04
16	8.5	TS	64	00 00 00 00 20 06	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e2 00 00 3f 04
17	8.5	S	64	00 00 00 00 20 07	02 a0 c9 c	18 27 9c	08 00	45 00 00 2e fb e2 00 00 3f 04 🖵
٩Ĵ								•
Retrie	ing Frame 29 of	475 (6%)				CAPTUR	E OFF	ALL

Packet Status codes are:

- А Alignment
- С CRC

Т Trigger

Undersize

- Interframe gap subminimum
- L S Signature
- U V VLAN tag
- *How to Test Layer 3 Switches*

C.	apture - Port ()6 ML-77	10 100M	b Multi-Layer Eth	ernet TP		
<u>F</u> ile	<u>E</u> dit <u>C</u> apture	∐iew F	orma <u>t H</u> e	lp.			
	Delta(µSe	Status	Length	MAC dest	MAC src	type	data 🔺
1	(TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 eb 00 00 3f 0 🛄
2	168.2	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 ec 00 00 3f 0
3	167.8	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 ed 00 00 3f 0
4	168.2	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 ee 00 00 3f 0
5	167.9	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 ef 00 00 3f 04
6	167.7	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f0 00 00 3f 04
7	168.1	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f1 00 00 3f 04
8	168	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f2 00 00 3f 04
9	168.5	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f3 00 00 3f 04
10	167.7	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f4 00 00 3f 04
11	167.9	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f5 00 00 3f 04
12	167.9	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f6 00 00 3f 04
13	168	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f7 00 00 3f 04
14	168	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f8 00 00 3f 04
15	168.2	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 f9 00 00 3f 04
16	167.9	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 fa 00 00 3f 04
17	168.2	TS	64	00 00 00 00 20 06	02 a0 c9 d8 27 9c	08 00	45 00 00 2e a3 fb 00 00 3f 04 🖵
.∎Î_							<u> </u>
Retrie	ving Frame 22 d	f 475 (4%)			CAPTUR	E OFF	TRIGGERS

3. Repeat previous steps 1 and 2 but select the Capture **Packets with Rx Triggers** button.

Appendix A Sending PING, SNMP, and RIP Frames

In the Layer 3 Setup window (see Procedure 3), you can select Ping, SNMP, and RIP traffic to send. The SNMP and RIP frames are static frames based on RFC 1944 and which can be counted in the SmartWindows **Tx from stack** or **Rx to stack** counters.

Counters - 05 ML-7710	- (untitled)*				
All Ports		Events	Rates	Events	Rates
01 ML-7710		05 ML-7710	05 ML-7710	06 ML-7710	06 ML-7710
02 ML-7710					
U3 ML-7/10	Tu Eramon				
05 ML-7710					
05 ML-7710	Hx Frames				
07 ML-7710	Tx Bytes				
08 ML-7710	Rx Bytes				
09 ML-7710	Rx Triggers				
10 ML-7710	Collisions				
12 ML-7710	CRC Errors				
13 ML-7710	Alignment Errors				
14 ML-7710	OverSize				
15 ML-7710 16 ML-7710	Frag/UnderSize				
17 ML-7710	Tags				
18 ML-7710	Tx From Stack				
19 ML-7710 20 ML-7710	Rx To Stack				
21 SE-6205	ARP Replies Sent				
22 SE-6205	ARP Replies Received				
23 SE-6205	ARP Requests Received				
25 SE-6205	PING Replies Sent				
26 SE-6205	PING Requests Sent				
27 SE-6205	PING Requests Received				

Typical values are: Ping frequency 10, SNMP frequency 100, and RIP frequency 200.

To set and send a ping, refer to *Procedure 4, Pinging to Check Links*, on page 14.

Appendix B Editing Frames

In Layer 3 mode, you can edit the packet content *for each byte of a custom VTE* stream or you can edit the valid parameters of a packet set up with a specific protocol.

WARNINGS For a specific protocol such as IP or UDP, you should only edit the valid protocol parameters.

The last 18 bytes of EACH layer 3 mode stream is RESERVED FOR SMARTBITS usage. Any values inserted into a custom packet in the last 18 bytes will be overwritten.

The Custom packet view-window also allows you to see the byte location of protocol parameters; however, it is important to edit ONLY the parameters specifically set up for that protocol.

Creating Custom Packets

- 1. Click on the ML-7710 SmartCard and select Transmit Setup.
- 2. Double-click on the VTE stream, set the Protocol type to **Custom**. Click the **Edit** button. Note that there are no parameters assigned to the custom packet bytes.

- 3. Here you can edit the packet contents according to the custom packet you wish to create.
- 4. Use the File menu **Save As** command to save your parameters to a **.s** (S-Record) file for repeated use. Then click the close-X button. Then **OK**.

Viewing Byte Location of a Protocol Parameter

5. In the Frame Editor window, now select the Protocol menu **IP-UDP** command. The first packet checksum (csum) is for IP and listed first; the second checksum is for the UDP packet.

If you click inside a parameter such as TTL, the number 10 value turns *blue* inside the byte editor area -- so the exact location of specific parameters appears quickly and easily.

UDP Example

🏢 Frame Edi	tor - Port 05 ML-771	0 100Mb	Multi-L	.ayer E	then	net 1	ſΡ											_ 🗆 ×
<u>F</u> ile <u>E</u> dit ⊻ie	ew <u>O</u> ption <u>P</u> rotocol	<u>H</u> elp																
F 🖬 🖻																		
UDP		0000:	FF F	F FF	FF	FF	FF	00	00	00	00	00	05	08	00	45	00	
MAC Dest	######	0016:	00 2	2E UU 16 CO	20	00	00	UA OO	11	2E BD	A8 79	00	05	01	05	00	06 00	
MAC Src	00 00 00 00 00 05	0048:	00 0	0 00	00	00	00	00	00	5	00	00	00	00	00	00	00	
type	0800																	
ver	4						/											
len	5					/												
ToS	0				/													
tot	47																	
ID	0																	
frag	0																	
TTL	10																	
prot	17																	
csum	2EA8	The I	P pack	et chec	ksun	n is 2	2EA8	•										
SourcelP	192.005.001.005																	
DestIP	192.006.001.006																	
stc	49184																	
dst	7																	
len	27	The I	IDP ch	ecksur	n is F		•											
csum	BD79	<u> </u>																

Example of what not to do

This is an IP packet which has been edited in the underlined section; **SmartBits will overwrite the last 18 bytes of the packet.** This packet should be a custom packet, not an IP packet. To be usable as a custom packet, the frame length would have to be extended to 72 bytes.

🏢 Frame Edi	tor																		X		
<u>_F</u> ile <u>E</u> dit <u>V</u> ie	ew <u>O</u> ption <u>P</u> rotocol	<u>H</u> elp																			
28 B		0																			
IP		0000:	00	00	00	00	00	15	00	00	00	00	00	16	08	00	45	00		1	
MAC Dest	00 00 00 00 00 15	0016:	00	2E	00	00	00	00	00	04	4C	33	OB	16	21	2C	16	21			DO NOT EDIT the last 1
MAC Src	00 00 00 00 00 16	0032:	03	37 0A	<u>45</u> 02	00	00	0A	00	00	00	00	<u>01</u>	<u>64</u>	н7	85	01	02	_		 bytes of a frame.
type	0800													_							,
ver	4																				

Repeating a custom frame in another stream or card

To insert the protocol data in layer 3 mode (or on another card):

1. Set the length to the same value as the saved file. Select CUSTOM from the protocol field. Click the Edit button.

Transmit Setup - Port 01 ML-7710 100Mb Mul 💌							
Length (bytes) (without 4 byte CRC) © Fixed 96 C Random	Protocol Custom Edit						
<u>D</u> efault	JK Cancel						

2. Select **Open** from the Custom frame editor File menu.

📺 Frame Editor															_ 🗆 ×
<u>File</u> <u>E</u> dit ⊻iew	<u>O</u> ptio	n <u>P</u>	rotoc	ol <u>I</u>	<u>H</u> elp										
<u>O</u> pen	Ĭ	E	\checkmark		€)									
Save	00	00	00	15	00	00	00	00	00	16	08	00	45	00	
Save <u>A</u> s	00	00	00	00	00	04	4C	ØF	ØB	16	21	2C	16	21	
Exit	45	00	00	2E	00	00	00	00	ØA	04	A7	B5	01	0 <u>2</u>	
00 101 00 011	02	02	03	ØA	00	00	00	00	00	00	00	00	00	86	
									_			_	_		
Open an existing SmartWindow settings file							ΠCι	ustom	1		Byte:	63			

- 3. Select a previously saved file such as **cb_pkt.s**.
- 4. Save (File menu **Save As** command), update (Actions menu **Update** command), and transmit (click **Start** command on transmitting SmartCard), as required.

Appendix C Tips for Testing a Specific Parameter

For example, to test the ToS (Type of Service) parameter, you can set the ToS parameter in the IP packet as a trigger. Then view the SmartCounters for the trigger and/or capture the trigger packets. Note the following sequence.

- 1. Click on the port 5 SmartCard, select Transmit Setup, and double-click on a VTE IP stream.
- 2. Select **Custom** as the Protocol, then in the Frame Editor, select **IP** from the Protocol menu. This allows you to VIEW the parameter byte locations on the right side and EDIT valid parameters on the left side.

Parameter Sidebar for editing

Byte Location Area for View-Only

WARNINGS For a specific protocol such as IP or UDP, you should edit ONLY the parameters which appear in the Parameter Sidebar or which appear when you click the Edit button below the protocol entry.

The last 18 bytes of EACH layer 3 mode stream is RESERVED FOR SMARTBITS usage. Any values inserted into a custom packet in the last 18 bytes will be overwritten.

- 3. Here we edited the ToS field to be type 2, which appears at byte 16 (therefore the offset is 15). Select File menu **Save** command. Click the Close X button. Click **OK**.
- 4. To set the receive trigger on the port 6 receive card, set the offset to 15 bytes, and enter 02 as the value to set the trigger. Click **OK**.

Then click on the port 6 SmartCard and select the **Capture** command. In the Layer3 Capture Setup window, click on the selection:

- Packets with Rx Triggers
- 5. Click the **Start** button on the transmitting SmartCard and watch the Capture window.